Skip to main content
Log in

Stimuli responsive polymer-based strategies for polynucleotide delivery

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In recent years, stimuli responsive polymer based gene delivery vehicle design for cancer treatment and treatment of other genetic disorders has received extensive attention. Early studies focusing on DNA delivery have been facilitated by functional polymers and this area has seen further growth spurred by recent gene silencing strategies developed for small RNA [i.e., small interfering RNA (siRNA) or micro RNA (miRNA)] delivery. DNA and small RNAs possess analogous properties; however, their explicit differences define the specific challenges associated with the delivery route and the design of functional materials to overcome distinct challenges. Apart from classical gene delivery, the recent advances in genome editing have revealed the necessity of new delivery devices for genome editing tools. A system involving CRISPR (clustered, regularly interspaced, short palindromic repeats) and an endonuclease CRISPR-associated protein 9 (Cas9) coupled with a short, single-guide RNA (sgRNA) has emerged as a promising tool for genome editing along with functional delivery systems. For all these nucleic acid based treatments, the internal or external physiochemical changes in the biological tissue/cells play a major role in the design of stimuli responsive delivery materials for both in vitro and in vivo applications. This review emphasizes the recent advances in the use of pH, temperature, and redox potential-responsive polymers overcoming hurdles for delivery of gene and gene editing tools for both in vitro and in vivo applications. Specifically the chapter focuses on recently proposed delivery strategies, types of delivery systems, and polymer synthesis/modification methods. The recent advances in CRISPR/Cas9-sgRNA technology and delivery are also described in a separate section. The review ends with current clinical trials, concluding remarks, and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. H. Boulaiz, J.A. Marchal, J. Prados, C. Melguizo, and A. Aranega: Non-viral and viral vectors for gene therapy. Cell. Mol. Biol. 51(1), 3 (2005).

    CAS  Google Scholar 

  2. H. Yin, R.L. Kanasty, A.A. Eltoukhy, A.J. Vegas, J.R. Dorkin, and D.G. Anderson: Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15(8), 541 (2014).

    Article  CAS  Google Scholar 

  3. X. Guo and L. Huang: Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45(7), 971 (2012).

    Article  CAS  Google Scholar 

  4. M.E. Davis: Non-viral gene delivery systems. Curr. Opin. Biotechnol. 13(2), 128 (2002).

    Article  CAS  Google Scholar 

  5. D. Pezzoli and G. Candiani: Non-viral gene delivery strategies for gene therapy: A “menage a trois” among nucleic acids, materials, and the biological environment stimuli-responsive gene delivery vectors. J. Nanopart. Res. 15(3), 1523 (2013).

    Article  CAS  Google Scholar 

  6. J. Nguyen and F.C. Szoka: Nucleic acid delivery: The missing pieces of the puzzle?Acc. Chem. Res. 45(7), 1153 (2012).

    Article  CAS  Google Scholar 

  7. J. Li, Y. Wang, Y. Zhu, and D. Oupicky: Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J. Controlled Release 172(2), 589 (2013).

    Article  CAS  Google Scholar 

  8. A. Yousefi, G. Storm, R. Schiffelers, and E. Mastrobattista: Trends in polymeric delivery of nucleic acids to tumors. J. Controlled Release 170(2), 209 (2013).

    Article  CAS  Google Scholar 

  9. Y. Lee and K. Kataoka: Delivery of nucleic acid drugs. In Nucleic Acid Drugs, Vol. 249 (Springer-Verlag, Berlin, 2012); p. 95.

    Google Scholar 

  10. E. Fleige, M.A. Quadir, and R. Haag: Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Delivery Rev. 64(9), 866 (2012).

    Article  CAS  Google Scholar 

  11. M.S. Shim and Y.J. Kwon: Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Delivery Rev. 64(11), 1046 (2012).

    Article  CAS  Google Scholar 

  12. O. Onaca, R. Enea, D.W. Hughes, and W. Meier: Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol. Biosci. 9(2), 129 (2009).

    Article  CAS  Google Scholar 

  13. E.G. Kelley, J.N.L. Albert, M.O. Sullivan, and T.H. Epps, III: Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem. Soc. Rev. 42(17), 7057 (2013).

    Article  CAS  Google Scholar 

  14. L. Zha, B. Banik, and F. Alexis: Stimulus responsive nanogels for drug delivery. Soft Matter 7(13), 5908 (2011).

    Article  CAS  Google Scholar 

  15. F-S. Du, Y. Wang, R. Zhang, and Z-C. Li: Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 6(5), 835 (2010).

    Article  CAS  Google Scholar 

  16. M. Joglekar and B.G. Trewyn: Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol. J. 8(8), 931 (2013).

    Article  CAS  Google Scholar 

  17. Q. Zhang, N.R. Ko, and J.K. Oh: Recent advances in stimuli-responsive degradable block copolymer micelles: Synthesis and controlled drug delivery applications. Chem. Commun. 48(61), 7542 (2012).

    Article  CAS  Google Scholar 

  18. R.S. Bora, D. Gupta, T.K.S. Mukkur, and K.S. Saini: RNA interference therapeutics for cancer: Challenges and opportunities (Review). Mol. Med. Rep. 6(1), 9 (2012).

    CAS  Google Scholar 

  19. P. Resnier, T. Montier, V. Mathieu, J.P. Benoit, and C. Passirani: A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34(27), 6429 (2013).

    Article  CAS  Google Scholar 

  20. C. Scholz and E. Wagner: Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. J. Controlled Release 161(2), 554 (2012).

    Article  CAS  Google Scholar 

  21. C.M. Wiethoff and C.R. Middaugh: Barriers to nonviral gene delivery. J. Pharm. Sci. 92(2), 203 (2003).

    Article  CAS  Google Scholar 

  22. C.H. Jones, C.K. Chen, A. Ravikrishnan, S. Rane, and B.A. Pfeifer: Overcoming nonviral gene delivery barriers: Perspective and future. Mol. Pharm. 10(11), 4082 (2013).

    Article  CAS  Google Scholar 

  23. A. Kwok and S.L. Hart: Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 7(2), 210 (2011).

    Article  CAS  Google Scholar 

  24. B. Ballarin-Gonzalez and K.A. Howard: Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Adv. Drug Delivery Rev. 64(15), 1717 (2012).

    Article  CAS  Google Scholar 

  25. M. Breunig, C. Hozsa, U. Lungwitz, K. Watanabe, I. Umeda, H. Kato, and A. Goepferich: Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: Disulfide bonds boost intracellular release of the cargo. J. Controlled Release 130(1), 57 (2008).

    Article  CAS  Google Scholar 

  26. A. Elbakry, A. Zaky, R. Liebkl, R. Rachel, A. Goepferich, and M. Breunig: Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 9(5), 2059 (2009).

    Article  CAS  Google Scholar 

  27. C.C. Lee, Y. Liu, and T.M. Reineke: General structure-activity relationship for poly(glycoamidoamine)s: The effect of amine density on cytotoxicity and DNA delivery efficiency. Bioconjugate Chem. 19(2), 428 (2008).

    Article  CAS  Google Scholar 

  28. A.K. Varkouhi, G. Mountrichas, R.M. Schiffelers, T. Lammers, G. Storm, S. Pispas, and W.E. Hennink: Polyplexes based on cationic polymers with strong nucleic acid binding properties. Eur. J. Pharm. Sci. 45(4), 459 (2012).

    Article  CAS  Google Scholar 

  29. J.D. Heidel and M.E. Davis: Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28(2), 187 (2011).

    Article  CAS  Google Scholar 

  30. J.V. Jokerst, T. Lobovkina, R.N. Zare, and S.S. Gambhir: Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6(4), 715 (2011).

    Article  CAS  Google Scholar 

  31. F. Zhao, Y. Zhao, Y. Liu, X. Chang, C. Chen, and Y. Zhao: Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10), 1322 (2011).

    Article  CAS  Google Scholar 

  32. S. Mukherjee, R.N. Ghosh, and F.R. Maxfield: Endocytosis. Physiol. Rev. 77(3), 759 (1997).

    Article  CAS  Google Scholar 

  33. S. Tortorella and T.C. Karagiannis: Transferrin receptor-mediated endocytosis: A useful target for cancer therapy. J. Membr. Biol. 247(4), 291 (2014).

    Article  CAS  Google Scholar 

  34. I.A. Khalil, K. Kogure, H. Akita, and H. Harashima: Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58(1), 32 (2006).

    Article  CAS  Google Scholar 

  35. A.K. Varkouhi, M. Scholte, G. Storm, and H.J. Haisma: Endosomal escape pathways for delivery of biologicals. J. Controlled Release 151(3), 220 (2011).

    Article  CAS  Google Scholar 

  36. F. Vicentini, L.N. Borgheti-Cardoso, L.V. Depieri, D.D. Mano, T.F. Abelha, R. Petrilli, and M. Bentley: Delivery systems and local administration routes for therapeutic siRNA. Pharm. Res. 30(4), 915 (2013).

    Article  CAS  Google Scholar 

  37. E. Rizzardo, M. Chen, B. Chong, G. Moad, M. Skidmore, and S.H. Thang: RAFT polymerization: Adding to the picture. Macromol. Symp. 248(1), 104 (2007).

    Article  CAS  Google Scholar 

  38. Y.K. Chong, G. Moad, E. Rizzardo, M.A. Skidmore, and S.H. Thang: Reversible addition fragmentation chain transfer polymerization of methyl methacrylate in the presence of Lewis acids: An approach to stereocontrolled living radical polymerization. Macromolecules 40(26), 9262 (2007).

    Article  CAS  Google Scholar 

  39. V. Coessens, T. Pintauer, and K. Matyjaszewski: Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 26(3), 337 (2001).

    Article  CAS  Google Scholar 

  40. K. Matyjaszewski and N.V. Tsarevsky: Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1(4), 276 (2009).

    Article  CAS  Google Scholar 

  41. B.Q. Zhang, M. Kanapathipillai, P. Bisso, and S. Mallapragada: Novel pentablock copolymers for selective gene delivery to cancer cells. Pharm. Res. 26(3), 700 (2009).

    Article  CAS  Google Scholar 

  42. A. Beyerle, O. Merkel, T. Stoeger, and T. Kissel: PEGylation affects cytotoxicity and cell-compatibility of poly(ethylene imine) for lung application: Structure-function relationships. Toxicol. Appl. Pharmacol. 242(2), 146 (2010).

    Article  CAS  Google Scholar 

  43. A.J. Convertine, D.S.W. Benoit, C.L. Duvall, A.S. Hoffman, and P.S. Stayton: Development of a novel endosomolytic diblock copolymer for siRNA delivery. J. Controlled Release 133(3), 221 (2009).

    Article  CAS  Google Scholar 

  44. S.T. Guo, Y.Y. Huang, T. Wei, W.D. Zhang, W.W. Wang, D. Lin, X. Zhang, A. Kumar, Q.A. Du, J.F. Xing, L.D. Deng, Z.C. Liang, P.C. Wang, A.J. Dong, and X.J. Liang: Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials 32(3), 879 (2011).

    Article  CAS  Google Scholar 

  45. T.M. Hinton, C. Guerrero-Sanchez, J.E. Graham, T. Le, B.W. Muir, S.N. Shi, M.L.V. Tizard, P.A. Gunatillake, K.M. McLean, and S.H. Thang: The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency. Biomaterials 33(30), 7631 (2012).

    Article  CAS  Google Scholar 

  46. O.M. Merkel, D. Librizzi, A. Pfestroff, T. Schurrat, K. Buyens, N.N. Sanders, S.C. De Smedt, M. Behe, and T. Kissel: Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: Effects on pharmacokinetics and biodistribution measured by fluorescence fluctuation spectroscopy and single photon emission computed tomography (SPECT) imaging. J. Controlled Release 138(2), 148 (2009).

    Article  CAS  Google Scholar 

  47. C.E. Nelson, J.R. Kintzing, A. Hanna, J.M. Shannon, M.K. Gupta, and C.L. Duvall: Balancing cationic and hydrophobic content of PEGylated siRNA polyplexes enhances endosome escape, stability, blood circulation time, and bioactivity in vivo. ACS Nano 7, 8870 (2013).

    Article  CAS  Google Scholar 

  48. M.L. Patil, M. Zhang, and T. Minko: Multifunctional triblock nanocarrier (PAMAM-PEG-PLL) for the efficient intracellular siRNA delivery and gene silencing. ACS Nano 5(3), 1877 (2011).

    Article  CAS  Google Scholar 

  49. T.M. Sun, J.Z. Du, L.F. Yan, H.Q. Mao, and J. Wang: Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29(32), 4348 (2008).

    Article  CAS  Google Scholar 

  50. M.Y. Zheng, D. Librizzi, A. Kilic, Y. Liu, H. Renz, O.M. Merkel, and T. Kissel: Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials 33(27), 6551 (2012).

    Article  CAS  Google Scholar 

  51. L. Zhou, Z.F. Chen, F.F. Wang, X.Q. Yang, and B.L. Zhang: Multifunctional triblock co-polymer mP3/4HB-b-PEG-b-lPEI for efficient intracellular siRNA delivery and gene silencing. Acta Biomater. 9(4), 6019 (2013).

    Article  CAS  Google Scholar 

  52. T. Segura and J.A. Hubbell: Synthesis and in vitro characterization of an ABC triblock copolymer for siRNA delivery. Bioconjugate Chem. 18(3), 736 (2007).

    Article  CAS  Google Scholar 

  53. S.W. Choi, S.H. Lee, H. Mok, and T.G. Park: Multifunctional siRNA delivery system: Polyelectrolyte complex micelles of six-arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide. Biotechnol. Prog. 26(1), 57 (2010).

    CAS  Google Scholar 

  54. S.H. Lee, S.H. Kim, and T.G. Park: Intracellular siRNA delivery system using polyelectrolyte complex micelles prepared from VEGF siRNA-PEG conjugate and cationic fusogenic peptide. Biochem. Biophys. Res. Commun. 357(2), 511 (2007).

    Article  CAS  Google Scholar 

  55. Z.X. Zhao, S.Y. Gao, J.C. Wang, C.J. Chen, E.Y. Zhao, W.J. Hou, Q. Feng, L.Y. Gao, X.Y. Liu, L.R. Zhang, and Q. Zhang: Self-assembly nanomicelles based on cationic mPEG-PLA- b -polyarginine(R-15) triblock copolymer for siRNA delivery. Biomaterials 33(28), 6793 (2012).

    Article  CAS  Google Scholar 

  56. J.G. Ray, S.S. Naik, E.A. Hoff, A.J. Johnson, J.T. Ly, C.P. Easterling, D.L. Patton, and D.A. Savin: Stimuli-responsive peptide-based ABA-triblock copolymers: Unique morphology transitions with pH. Macromol. Rapid Commun. 33(9), 819 (2012).

    Article  CAS  Google Scholar 

  57. J. Hoyer and I. Neundorf: Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res. 45(7), 1048 (2012).

    Article  CAS  Google Scholar 

  58. L. Cantini, C.C. Attaway, B. Butler, L.M. Andino, M.L. Sokolosky, and A. Jakymiw: Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells. PLoS One 8(9), e73348 (2013).

    Article  CAS  Google Scholar 

  59. Y. Sakurai, H. Hatakeyama, Y. Sato, H. Akita, K. Takayama, S. Kobayashi, S. Futaki, and H. Harashima: Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA. Biomaterials 32(24), 5733 (2011).

    Article  CAS  Google Scholar 

  60. Y. Sakurai, H. Hatakeyama, H. Akita, M. Oishi, Y. Nagasaki, S. Futaki, and H. Harashima: Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system. Biol. Pharm. Bull. 32(5), 928 (2009).

    Article  CAS  Google Scholar 

  61. H. Hatakeyama, E. Ito, H. Akita, M. Oishi, Y. Nagasaki, S. Futaki, and H. Harashima: A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J. Controlled Release 139(2), 127 (2009).

    Article  CAS  Google Scholar 

  62. S. Lee, K. Saito, H.R. Lee, M.J. Lee, Y. Shibasaki, Y. Oishi, and B.S. Kim: Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromolecules 13(4), 1190 (2012).

    Article  CAS  Google Scholar 

  63. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka: Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127(6), 1624 (2005).

    Article  CAS  Google Scholar 

  64. J. Su, F. Chen, V.L. Cryns, and P.B. Messersmith: Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc. 133(31), 11850 (2011).

    Article  CAS  Google Scholar 

  65. Y. Xin and J. Yuan: Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem. 3(11), 3045 (2012).

    Article  CAS  Google Scholar 

  66. S. Chen: Tumor-targeting Drug Delivery System of Anticancer Agent (ProQuest, New York, 2008).

    Google Scholar 

  67. C. Cheng, A.J. Convertine, P.S. Stayton, and J.D. Bryers: Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials 33(28), 6868 (2012).

    Article  CAS  Google Scholar 

  68. A. Agarwal, R. Unfer, and S.K. Mallapragada: Novel cationic pentablock copolymers as non-viral vectors for gene therapy. J. Controlled Release 103(1), 245 (2005).

    Article  CAS  Google Scholar 

  69. A. Agarwal, R. Unfer, and S.K. Mallapragada: Investigation of in vitro biocompatibility of novel pentablock copolymers for gene delivery. J. Biomed. Mater. Res., Part A 81(1), 24 (2007).

    Article  CAS  Google Scholar 

  70. A. Agarwal, R.C. Unfer, and S.K. Mallapragada: Dual-role self-assembling nanoplexes for efficient gene transfection and sustained gene delivery. Biomaterials 29(5), 607 (2008).

    Article  CAS  Google Scholar 

  71. M. Uz, S.K. Mallapragada, and S.A. Altinkaya: Responsive pentablock copolymers for siRNA delivery. RSC Adv. 5(54), 43515 (2015).

    Article  CAS  Google Scholar 

  72. Y.L. Lin, G.H. Jiang, L.K. Birrell, and M.E.H. El-Sayed: Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids. Biomaterials 31(27), 7150 (2010).

    Article  CAS  Google Scholar 

  73. C.V. Synatschke, A. Schallon, V. Jérôme, R. Freitag, and A.H.E. Müller: Influence of polymer architecture and molecular weight of poly(2-(dimethylamino)ethyl methacrylate) polycations on transfection efficiency and cell viability in gene delivery. Biomacromolecules 12(12), 4247 (2011).

    Article  CAS  Google Scholar 

  74. X. Qian, L. Long, Z. Shi, C. Liu, M. Qiu, J. Sheng, P. Pu, X. Yuan, Y. Ren, and C. Kang: Star-branched amphiphilic PLA- b -PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 35(7), 2322 (2014).

    Article  CAS  Google Scholar 

  75. A.J. Convertine, C. Diab, M. Prieve, A. Paschal, A.S. Hoffman, P.H. Johnson, and P.S. Stayton: Ph-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 11(11), 2904 (2010).

    Article  CAS  Google Scholar 

  76. M. Ripoll, P. Neuberg, A. Kichler, N. Tounsi, A. Wagner, and J.S. Remy: Ph-responsive nanometric polydiacetylenic micelles allow for efficient intracellular siRNA delivery. ACS Appl. Mater. Interfaces 8(45), 30665 (2016).

    Article  CAS  Google Scholar 

  77. W.J. Lin, N. Yao, H.R. Li, S. Hanson, W.Q. Han, C. Wang, and L.J. Zhang: Co-delivery of imiquimod and plasmid DNA via an amphiphilic pH-responsive star polymer that forms unimolecular micelles in water. Polymers 8(11), 397 (2016).

    Article  CAS  Google Scholar 

  78. V. Kumar, G. Mondal, P. Slavik, S. Rachagani, S.K. Batra, and R.I. Mahato: Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. Mol. Pharmaceutics 12(4), 1289 (2015).

    Article  CAS  Google Scholar 

  79. H.J. Yu, Y.L. Zou, Y.G. Wang, X.N. Huang, G. Huang, B.D. Sumer, D.A. Boothman, and J.M. Gao: Overcoming endosomal barrier by amphotericin B-Loaded dual pH-responsive PDMA- b -PDPA micelleplexes for siRNA delivery. ACS Nano 5(11), 9246 (2011).

    Article  CAS  Google Scholar 

  80. E.S. Lee, K. Na, and Y.H. Bae: Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 5(2), 325 (2005).

    Article  CAS  Google Scholar 

  81. E.S. Lee, Z. Gao, D. Kim, K. Park, I.C. Kwon, and Y.H. Bae: Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J. Controlled Release 129(3), 228 (2008).

    Article  CAS  Google Scholar 

  82. W.S. Cho, M. Cho, J. Jeong, M. Choi, B.S. Han, H.S. Shin, J. Hong, B.H. Chung, J. Jeong, and M.H. Cho: Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol. Appl. Pharmacol. 245(1), 116 (2010).

    Article  CAS  Google Scholar 

  83. J.S. Lee, J.J. Green, K.T. Love, J. Sunshine, R. Langer, and D.G. Anderson: Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 9(6), 2402 (2009).

    Article  CAS  Google Scholar 

  84. H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan: Toxicity of cationic lipids and cationic polymers in gene delivery. J. Controlled Release 114(1), 100 (2006).

    Article  CAS  Google Scholar 

  85. D. Fischer, Y.X. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel: In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7), 1121 (2003).

    Article  CAS  Google Scholar 

  86. G.F. Walker, C. Fella, J. Pelisek, J. Fahrmeir, S. Boeckle, M. Ogris, and E. Wagner: Toward synthetic viruses: Endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol. Ther. 11(3), 418 (2005).

    Article  CAS  Google Scholar 

  87. N. Murthy, J. Campbell, N. Fausto, A.S. Hoffman, and P.S. Stayton: Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides. J. Controlled Release 89(3), 365 (2003).

    Article  CAS  Google Scholar 

  88. S. Lin, F. Du, Y. Wang, S. Ji, D. Liang, L. Yu, and Z. Li: An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules 9(1), 109 (2008).

    Article  CAS  Google Scholar 

  89. D.B. Rozema, D.L. Lewis, D.H. Wakefield, S.C. Wong, J.J. Klein, P.L. Roesch, S.L. Bertin, T.W. Reppen, Q. Chu, A.V. Blokhin, J.E. Hagstrom, and J.A. Wolff: Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104(32), 12982 (2007).

    Article  CAS  Google Scholar 

  90. J.P. Lai, Z.Y. Xu, R.P. Tang, W.H. Ji, R. Wang, J. Wang, and C. Wang: PEGylated block copolymers containing tertiary amine side-chains cleavable via acid-labile ortho ester linkages for pH-triggered release of DNA. Polymer 55(12), 2761 (2014).

    Article  CAS  Google Scholar 

  91. M. Yu, L. Zhang, J. Wang, R.P. Tang, G.Q. Yan, Z.P. Cao, and X. Wang: Acid-labile poly(ortho ester amino alcohols) by ring-opening polymerization for controlled DNA release and improved serum tolerance. Polymer 96, 146 (2016).

    Article  CAS  Google Scholar 

  92. H. Jung, S.A. Kim, E. Lee, and H. Mok: Linear polyethyleneimine-doxorubicin conjugate for pH-responsive synchronous delivery of drug and microRNA-34a. Macromol. Res. 23(5), 449 (2015).

    Article  CAS  Google Scholar 

  93. E.S. Lee, Z. Gao, and Y.H. Bae: Recent progress in tumor pH targeting nanotechnology. J. Controlled Release 132(3), 164 (2008).

    Article  CAS  Google Scholar 

  94. M. Tangsangasaksri, H. Takemoto, M. Naito, Y. Maeda, D. Sueyoshi, H.J. Kim, Y. Miura, J. Ahn, R. Azuma, N. Nishiyama, K. Miyata, and K. Kataoka: Sirna-loaded polyion complex micelle decorated with charge-conversional polymer tuned to undergo stepwise response to intra-tumoral and intra-endosomal pHs for exerting enhanced RNAi efficacy. Biomacromolecules 17(1), 246 (2016).

    Article  CAS  Google Scholar 

  95. B. Fan, L. Kang, L. Chen, P. Sun, M. Jin, Q. Wang, Y.H. Bae, W. Huang, and Z. Gao: Systemic siRNA delivery with a dual pH-responsive and tumor-targeted nanovector for inhibiting tumor growth and spontaneous metastasis in orthotopic murine model of breast carcinoma. Theranostics 7(2), 357 (2017).

    Article  CAS  Google Scholar 

  96. M.A. Ward and T.K. Georgiou: Thermoresponsive polymers for biomedical applications. Polymers 3(3), 1215 (2011).

    Article  CAS  Google Scholar 

  97. W. Zhang, L. Shi, K. Wu, and Y. An: Thermoresponsive micellization of poly(ethylene glycol)- b -poly(N-isopropylacrylamide) in water. Macromolecules 38(13), 5743 (2005).

    Article  CAS  Google Scholar 

  98. C.M. Schilli, M. Zhang, E. Rizzardo, S.H. Thang, Y.K. Chong, K. Edwards, G. Karlsson, and A.H.E. Müller: A new double-responsive block copolymer synthesized via RAFT Polymerization: poly(N -isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37(21), 7861 (2004).

    Article  CAS  Google Scholar 

  99. H. Wei, X-Z. Zhang, Y. Zhou, S-X. Cheng, and R-X. Zhuo: Self-assembled thermoresponsive micelles of poly(N -isopropylacrylamide- b -methyl methacrylate). Biomaterials 27(9), 2028 (2006).

    Article  CAS  Google Scholar 

  100. C. Alexander: Temperature- and pH-responsive smart polymers for gene delivery. Expert Opin. Drug Delivery 3(5), 573 (2006).

    Article  CAS  Google Scholar 

  101. M. Talelli and W.E. Hennink: Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine 6(7), 1245 (2011).

    Article  CAS  Google Scholar 

  102. E. Salcher and E. Wagner: Chemically programmed polymers for targeted DNA and siRNA transfection. In Nucleic Acid Transfection, W. Bielke and C. Erbacher, eds. (Springer, Berlin Heidelberg, 2010); p. 227.

    Chapter  Google Scholar 

  103. Z. Mao, L. Ma, J. Yan, M. Yan, C. Gao, and J. Shen: The gene transfection efficiency of thermoresponsive N, N, N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer. Biomaterials 28(30), 4488 (2007).

    Article  CAS  Google Scholar 

  104. D. Oupický, T. Reschel, Č. Koňák, and L. Oupická: Temperature-controlled behavior of self-assembly gene delivery vectors based on complexes of DNA with poly(l-lysine)-graft-poly(N -isopropylacrylamide). Macromolecules 36(18), 6863 (2003).

    Article  CAS  Google Scholar 

  105. M. Turk, S. Dincer, I.G. Yulug, and E. Piskin: In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J. Controlled Release 96(2), 325 (2004).

    Article  CAS  Google Scholar 

  106. M. Turk, S. Dincer, and E. Piskin: Smart and cationic poly(NIPA)/PEI block copolymers as non-viral vectors: In vitro and in vivo transfection studies. J. Tissue Eng. Regener. Med. 1(5), 377 (2007).

    Article  CAS  Google Scholar 

  107. M.T. Calejo, A.M.S. Cardoso, A-L. Kjoniksen, K. Zhu, C.M. Morais, S.A. Sande, A.L. Cardoso, M.C. Pedroso de Lima, A. Jurado, and B. Nystroem: Temperature-responsive cationic block copolymers as nanocarriers for gene delivery. Int. J. Pharm. 448(1), 105 (2013).

    Article  CAS  Google Scholar 

  108. X. Gu, J. Wang, X. Liu, D. Zhao, Y. Wang, H. Gao, and G. Wu: Temperature-responsive drug delivery systems based on polyaspartamides with isopropylamine pendant groups. Soft Matter 9(30), 7267 (2013).

    Article  CAS  Google Scholar 

  109. M.A. Cooperstein and H.E. Canavan: Assessment of cytotoxicity of (N -isopropyl acrylamide) and poly(N -isopropyl acrylamide)-coated surfaces. Biointerphases 8(1), 19 (2013).

    Article  CAS  Google Scholar 

  110. Y. Ma, S. Hou, B. Ji, Y. Yao, and X. Feng: A novel temperature-responsive polymer as a gene vector. Macromol. Biosci. 10(2), 202 (2010).

    Article  CAS  Google Scholar 

  111. J. Yang, P. Zhang, L. Tang, P. Sun, W. Liu, P. Sun, A. Zuo, and D. Liang: Temperature-tuned DNA condensation and gene transfection by PEI- g -(PMEO(2)MA- b -PHEMA) copolymer-based nonviral vectors. Biomaterials 31(1), 144 (2010).

    Article  CAS  Google Scholar 

  112. A. Agarwal, R. Vilensky, A. Stockdale, Y. Talmon, R.C. Unfer, and S.K. Mallapragada: Colloidally stable novel copolymeric system for gene delivery in complete growth media. J. Controlled Release 121(1–2), 28 (2007).

    Article  CAS  Google Scholar 

  113. B.Q. Zhang and S. Mallapragada: The mechanism of selective transfection mediated by pentablock copolymers; part I: Investigation of cellular uptake. Acta Biomater. 7(4), 1570 (2011).

    Article  CAS  Google Scholar 

  114. B.Q. Zhang and S. Mallapragada: The mechanism of selective transfection mediated by pentablock copolymers; part II: Nuclear entry and endosomal escape. Acta Biomater. 7(4), 1580 (2011).

    Article  CAS  Google Scholar 

  115. W. Tachaboonyakiat, H. Ajiro, and M. Akashi: Controlled DNA interpolyelectrolyte complex formation or dissociation via stimuli-responsive poly(vinylamine-co- N -vinylisobutylamide). J. Appl. Polym. Sci. 133(35), 43852 (2016).

    Article  CAS  Google Scholar 

  116. A.M. Cardoso, M.T. Calejo, C.M. Morais, A.L. Cardoso, R. Cruz, K. Zhu, M.C. Pedroso de Lima, A.S. Jurado, and B. Nyström: Application of thermoresponsive PNIPAAM- b -PAMPTMA diblock copolymers in siRNA delivery. Mol. Pharm. 11(3), 819 (2014).

    Article  CAS  Google Scholar 

  117. S.H. Choi, S.H. Lee, and T.G. Park: Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromolecules 7(6), 1864 (2006).

    Article  CAS  Google Scholar 

  118. S.H. Lee, S.H. Choi, S.H. Kim, and T.G. Park: Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. J. Controlled Release 125(1), 25 (2008).

    Article  CAS  Google Scholar 

  119. L. Yuanpei, P. Shirong, Z. Wei, and D. Zhuo: Novel thermo-sensitive core–shell nanoparticles for targeted paclitaxel delivery. Nanotechnology 20(6), 065104 (2009).

    Article  CAS  Google Scholar 

  120. A. Zintchenko, M. Ogris, and E. Wagner: Temperature dependent gene expression induced by PNIPAM-based copolymers: Potential of hyperthermia in gene transfer. Bioconjugate Chem. 17(3), 766 (2006).

    Article  CAS  Google Scholar 

  121. A. Schwerdt, A. Zintchenko, M. Concia, N. Roesen, K. Fisher, L.H. Lindner, R. Issels, E. Wagner, and M. Ogris: Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum. Gene Ther. 19(11), 1283 (2008).

    Article  CAS  Google Scholar 

  122. Y.H. Bae, T. Okano, and S.W. Kim: “On-off” thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharm. Res. 8(4), 531 (1991).

    Article  CAS  Google Scholar 

  123. J.C. Cuggino, C.I. Alvarez, M.C. Strumia, P. Welker, K. Licha, D. Steinhilber, R-C. Mutihac, and M. Calderon: Thermosensitive nanogels based on dendritic polyglycerol and N -isopropylacrylamide for biomedical applications. Soft Matter 7(23), 11259 (2011).

    Article  CAS  Google Scholar 

  124. X-J. Cai, H-Q. Dong, W-J. Xia, H-Y. Wen, X-Q. Li, J-H. Yu, Y-Y. Li, and D-L. Shi: Glutathione-mediated shedding of PEG layers based on disulfide-linked catiomers for DNA delivery. J. Mater. Chem. 21(38), 14639 (2011).

    Article  CAS  Google Scholar 

  125. A.W. York, F.Q. Huang, and C.L. McCormick: Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA- s -APMA) copolymers. Biomacromolecules 11(2), 505 (2010).

    Article  CAS  Google Scholar 

  126. S. Matsumoto, R.J. Christie, N. Nishiyama, K. Miyata, A. Ishii, M. Oba, H. Koyama, Y. Yamasaki, and K. Kataoka: Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 10(1), 119 (2009).

    Article  CAS  Google Scholar 

  127. R.J. Christie, K. Miyata, Y. Matsumoto, T. Nomoto, D. Menasco, T.C. Lai, M. Pennisi, K. Osada, S. Fukushima, N. Nishiyama, Y. Yamasaki, and K. Kataoka: Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thiols and amidines. Biomacromolecules 12(9), 3174 (2011).

    Article  CAS  Google Scholar 

  128. H.M. Li, H. Jiang, M.N. Zhao, Y. Fu, and X. Sun: Intracellular redox potential-responsive micelles based on polyethylenimine-cystamine-poly(epsilon-caprolactone) block copolymer for enhanced miR-34a delivery. Polym. Chem. 6(11), 1952 (2015).

    Article  CAS  Google Scholar 

  129. B.B. Lundy, A. Convertine, M. Miteva, and P.S. Stayton: Neutral polymeric micelles for RNA delivery. Bioconjugate Chem. 24(3), 398 (2013).

    Article  CAS  Google Scholar 

  130. T.T. Zhang, X. Xue, D.L. He, and J.T. Hsieh: A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett. 365(2), 156 (2015).

    Article  CAS  Google Scholar 

  131. Q.D. Hu, K. Wang, X. Sun, Y. Li, Q.H. Fu, T.B. Liang, and G.P. Tang: A redox-sensitive, oligopeptide-guided, self-assembling, and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for treatment of hepatocellular carcinoma. Biomaterials 104, 192 (2016).

    Article  CAS  Google Scholar 

  132. J.R. Adams and S.K. Mallapragada: Novel atom transfer radical polymerization method to yield copper-free block copolymeric biomaterials. Macromol. Chem. Phys. 214(12), 1321 (2013).

    Article  CAS  Google Scholar 

  133. E.V. Batrakova, S. Li, S.V. Vinogradov, V.Y. Alakhov, D.W. Miller, and A.V. Kabanov: Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: Contributions of energy depletion and membrane fluidization. J. Pharmacol. Exp. Ther. 299(2), 483 (2001).

    CAS  Google Scholar 

  134. M.D. Determan, J.P. Cox, and S.K. Mallapragada: Drug release from pH-responsive thermogelling pentablock copolymers. J. Biomed. Mater. Res., Part A 81(2), 326 (2007).

    Article  CAS  Google Scholar 

  135. M.D. Determan, J.P. Cox, S. Seifert, P. Thiyagarajan, and S.K. Mallapragada: Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer 46(18), 6933 (2005).

    Article  CAS  Google Scholar 

  136. A.V. Kabanov, E.V. Batrakova, and V.Y. Alakhov: Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Controlled Release 82(2–3), 189 (2002).

    Article  CAS  Google Scholar 

  137. B.Q. Zhang, F. Jia, M.Q. Fleming, and S.K. Mallapragada: Injectable self-assembled block copolymers for sustained gene and drug co-delivery: An in vitro study. Int. J. Pharm. 427(1), 88 (2012).

    Article  CAS  Google Scholar 

  138. B. Zhang, Y. Zhang, S.K. Mallapragada, and A.R. Clapp: Sensing polymer/DNA polyplex dissociation using quantum dot fluorophores. ACS Nano 5(1), 129 (2011).

    Article  CAS  Google Scholar 

  139. A. Agarwal and S.K. Mallapragada: Synthetic sustained gene delivery systems. Curr. Top. Med. Chem. 8(4), 311 (2008).

    Article  CAS  Google Scholar 

  140. N.S. Melik-Nubarov, O.O. Pomaz, T. Dorodnych, G.A. Badun, A.L. Ksenofontov, O.B. Schemchukova, and S.A. Arzhakov: Interaction of tumor and normal blood cells with ethylene oxide and propylene oxide block copolymers. FEBS Lett. 446(1), 194 (1999).

    Article  CAS  Google Scholar 

  141. H. Bao, L. Li, L.H. Gan, Y. Ping, J. Li, and P. Ravi: Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 43(13), 5679 (2010).

    Article  CAS  Google Scholar 

  142. X. Liu, P. Ni, J. He, and M. Zhang: Synthesis and micellization of pH/temperature-responsive double-hydrophilic diblock copolymers polyphosphoester-block-poly[2-(dimethylamino)ethyl methacrylate] prepared via ROP and ATRP. Macromolecules 43(10), 4771 (2010).

    Article  CAS  Google Scholar 

  143. M. Sanjoh, K. Miyata, R.J. Christie, T. Ishii, Y. Maeda, F. Pittella, S. Hiki, N. Nishiyama, and K. Kataoka: Dual environment-responsive polyplex carriers for enhanced intracellular delivery of plasmid DNA. Biomacromolecules 13(11), 3641 (2012).

    Article  CAS  Google Scholar 

  144. K. An, P. Zhao, C. Lin, and H. Liu: A pH and redox dual responsive 4-arm poly(ethylene glycol)-block-poly(disulfide histamine) copolymer for non-viral gene transfection in vitro and in vivo. Int. J. Mol. Sci. 15(5), 9067 (2014).

    Article  CAS  Google Scholar 

  145. J.M. Qian, M.H. Xu, A.L. Suo, W.J. Xu, T. Liu, X.F. Liu, Y. Yao, and H.J. Wang: Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin. and Bcl-2 siRNA in breast cancer therapy. Acta Biomater. 15, 102 (2015).

    Article  CAS  Google Scholar 

  146. H. Xu, F. Meng, and Z. Zhong: Reversibly crosslinked temperature-responsive nano-sized polymersomes: Synthesis and triggered drug release. J. Mater. Chem. 19(24), 4183 (2009).

    Article  CAS  Google Scholar 

  147. Y. Wen, Z. Zhang, and J. Li: Highly efficient multifunctional supramolecular gene carrier system self-assembled from redox-sensitive and zwitterionic polymer blocks. Adv. Funct. Mater. 24(25), 3874 (2014).

    Article  CAS  Google Scholar 

  148. A. Klaikherd, C. Nagamani, and S. Thayumanavan: Multi-stimuli sensitive amphiphilic block copolymer assemblies. J. Am. Chem. Soc. 131(13), 4830 (2009).

    Article  CAS  Google Scholar 

  149. J. Dong, Y. Wang, J. Zhang, X. Zhan, S. Zhu, H. Yang, and G. Wang: Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 9(2), 370 (2013).

    Article  CAS  Google Scholar 

  150. X.O. Ma, N.Z. Zhou, T.Z. Zhang, Z.C. Guo, W.J. Hu, C.H. Zhu, D.D. Ma, and N. Gu: In situ formation of multiple stimuli-responsive poly (methyl vinyl ether)-alt-(maleic acid)-based supramolecular hydrogels by inclusion complexation between cyclodextrin and azobenzene. RSC Adv. 6(16), 13129 (2016).

    Article  CAS  Google Scholar 

  151. R. Cheng, F. Feng, F.H. Meng, C. Deng, J. Feijen, and Z.Y. Zhong: Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Controlled Release 152(1), 2 (2011).

    Article  CAS  Google Scholar 

  152. D.A. Giljohann, D.S. Seferos, A.E. Prigodich, P.C. Patel, and C.A. Mirkin: Gene regulation with polyvalent siRNA-nanoparticle conjugates. J. Am. Chem. Soc. 131(6), 2072 (2009).

    Article  CAS  Google Scholar 

  153. K. Gunasekaran, T.H. Nguyen, H.D. Maynard, T.P. Davis, and V. Bulmus: Conjugation of siRNA with comb-type PEG enhances serum stability and gene silencing efficiency. Macromol. Rapid Commun. 32(8), 654 (2011).

    Article  CAS  Google Scholar 

  154. S.H. Lee, K.H. Bae, S.H. Kim, K.R. Lee, and T.G. Park: Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int. J. Pharm. 364(1), 94 (2008).

    Article  CAS  Google Scholar 

  155. M. Oishi, J. Nakaogami, T. Ishii, and Y. Nagasaki: Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett. 35(9), 1046 (2006).

    Article  CAS  Google Scholar 

  156. H. Takemoto, A. Ishii, K. Miyata, M. Nakanishi, M. Oba, T. Ishii, Y. Yamasaki, N. Nishiyama, and K. Kataoka: Polyion complex stability and gene silencing efficiency with a siRNA-grafted polymer delivery system. Biomaterials 31(31), 8097 (2010).

    Article  CAS  Google Scholar 

  157. A.K. Varkouhi, R.J. Verheul, R.M. Schiffelers, T. Lammers, G. Storm, and W.E. Hennink: Gene silencing activity of siRNA polyplexes based on thiolated N, N, N-trimethylated chitosan. Bioconjugate Chem. 21(12), 2339 (2010).

    Article  CAS  Google Scholar 

  158. Y-I. Jo, B. Suresh, H. Kim, and S. Ramakrishna: CRISPR/Cas9 system as an innovative genetic engineering tool: Enhancements in sequence specificity and delivery methods. Biochim. Biophys. Acta, Rev. Cancer 1856(2), 234 (2015).

    Article  CAS  Google Scholar 

  159. E. Senis, C. Fatouros, S. Grosse, E. Wiedtke, D. Niopek, A-K. Mueller, K. Boerner, and D. Grimm: CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox. Biotechnol. J. 9(11), 1402 (2014).

    Article  CAS  Google Scholar 

  160. R. Moore, A. Spinhirne, M.J. Lai, S. Preisser, Y. Li, T. Kang, and L. Bleris: CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res. 43(2), 1297 (2015).

    Article  CAS  Google Scholar 

  161. R.J. Platt, S. Chen, Y. Zhou, M.J. Yim, L. Swiech, H.R. Kempton, J.E. Dahlman, O. Parnas, T.M. Eisenhaure, M. Jovanovic, D.B. Graham, S. Jhunjhunwala, M. Heidenreich, R.J. Xavier, R. Langer, D.G. Anderson, N. Hacohen, A. Regev, G. Feng, P.A. Sharp, and F. Zhang: CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2), 440 (2014).

    Article  CAS  Google Scholar 

  162. J.S. LaFountaine, K. Fathe, and H.D.C. Smyth: Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 494(1), 180 (2015).

    Article  CAS  Google Scholar 

  163. L. Wang, F. Li, L. Dang, C. Liang, C. Wang, B. He, J. Liu, D. Li, X. Wu, X. Xu, A. Lu, and G. Zhang: In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 17(5), 626 (2016).

    Article  CAS  Google Scholar 

  164. J. Liu and S.L. Shui: Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J. Controlled Release 244, 83 (2016).

    Article  CAS  Google Scholar 

  165. J. Yin, Y. Chen, Z.H. Zhang, and X. Han: Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 8(7), 268 (2016).

    Article  Google Scholar 

  166. M.W. Konstan, P.B. Davis, J.S. Wagener, K.A. Hilliard, R.C. Stern, L.J. Milgram, T.H. Kowalczyk, S.L. Hyatt, T.L. Fink, C.R. Gedeon, S.M. Oette, J.M. Payne, O. Muhammad, A.G. Ziady, R.C. Moen, and M.J. Cooper: Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther. 15(12), 1255 (2004).

    Article  CAS  Google Scholar 

  167. M.J. Vicent, F. Greco, R.I. Nicholson, A. Paul, P.C. Griffiths, and R. Duncan: Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew. Chem., Int. Ed. Engl. 44(26), 4061 (2005).

    Article  CAS  Google Scholar 

  168. Y. Matsumura: The drug discovery by nanomedicine and its clinical experience. Jpn. J. Clin. Oncol. 44(6), 515 (2014).

    Article  Google Scholar 

  169. K. Kato, K. Chin, T. Yoshikawa, K. Yamaguchi, Y. Tsuji, T. Esaki, K. Sakai, M. Kimura, T. Hamaguchi, Y. Shimada, Y. Matsumura, and R. Ikeda: Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs 30(4), 1621 (2012).

    Article  CAS  Google Scholar 

  170. T. Hamaguchi, Y. Matsumura, M. Suzuki, K. Shimizu, R. Goda, I. Nakamura, I. Nakatomi, M. Yokoyama, K. Kataoka, and T. Kakizoe: NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer 92(7), 1240 (2005).

    Article  CAS  Google Scholar 

  171. A. Takahashi, Y. Yamamoto, M. Yasunaga, Y. Koga, J-I. Kuroda, M. Takigahira, M. Harada, H. Saito, T. Hayashi, Y. Kato, T. Kinoshita, N. Ohkohchi, I. Hyodo, and Y. Matsumura: NC-6300, an epirubicin-incorporating micelle, extends the antitumor effect and reduces the cardiotoxicity of epirubicin. Cancer Sci. 104(7), 920 (2013).

    Article  CAS  Google Scholar 

  172. M. Harada, I. Bobe, H. Saito, N. Shibata, R. Tanaka, T. Hayashi, and Y. Kato: Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, NC-6300. Cancer Sci. 102(1), 192 (2011).

    Article  CAS  Google Scholar 

  173. D.W. Bartlett and M.E. Davis: Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng. 99(4), 975 (2008).

    Article  CAS  Google Scholar 

  174. S. Hu-Lieskovan, J.D. Heidel, D.W. Bartlett, M.E. Davis, and T.J. Triche: Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 65(19), 8984 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank the US Army Medical Research and Materiel Command (Grant number W81XWH-10-1-0806) and the Stanley Endowed Chair in Interdisciplinary Engineering for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya K. Mallapragada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uz, M., Altinkaya, S.A. & Mallapragada, S.K. Stimuli responsive polymer-based strategies for polynucleotide delivery. Journal of Materials Research 32, 2930–2953 (2017). https://doi.org/10.1557/jmr.2017.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.116

Navigation