Skip to main content
Log in

A C3N4/Bi2WO6 organic-inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

C3N4/Bi2WO6 heterojunction photocatalysts were successfully synthesized using consecutive hydrothermal and calcination processes. These photocatalysts were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence measurements. The results of these measurements indicated that the Bi2WO6 nanoparticles were approximately 30–50 nm and uniformly distributed on the surface of C3N4 lamellar structures. The 20% C3N4/Bi2WO6 displayed enhanced visible-light absorption from 432 nm to 468 nm. Photocatalytic tests also revealed that the 20% C3N4/Bi2WO6 photocatalyst exhibited significantly enhanced photocatalytic activity compared to that of pure C3N4 and Bi2WO6 under irradiation by visible light (λ > 420 nm). Furthermore, the excellent photocatalytic efficiency of the 20% C3N4/Bi2WO6 photocatalyst was determined to be related to the formation of C3N4/Bi2WO6 heterojunctions, and their presence was found to be generally beneficial for the separation of photogenerated electron-hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. D. Chen, K. Wang, W. Hong, R. Zong, W. Yao, and Y. Zhu: Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal., B 166, 366–373 (2015).

    Article  Google Scholar 

  2. S. Zhu, T. Xu, H. Fu, J. Zhao, and Y. Zhu: Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ. Sci. Technol. 41 (17), 6234–6239 (2007).

    Article  CAS  Google Scholar 

  3. Y. Wang, X. Bai, C. Pan, J. He, and Y. Zhu: Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J. Mater. Chem. 22 (23), 11568–11573 (2012).

    Article  CAS  Google Scholar 

  4. S. Chen, Y. Hu, X. Jiang, S. Meng, and X. Fu: Fabrication and characterization of novel Z-scheme photocatalyst WO3/g-C3N4 with high efficient visible light photocatalytic activity. Mater. Chem. Phys. 149, 512–521 (2015).

    Article  Google Scholar 

  5. N. Tian, H. Huang, Y. Guo, Y. He, and Y. Zhang: A g-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Appl. Surf. Sci. 322, 249–254 (2014).

    Article  CAS  Google Scholar 

  6. L. Zhang, H. Wang, Z. Chen, P.K. Wong, and J. Liu: Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications. Appl. Catal., B 106 (1), 1–13 (2011).

    Article  CAS  Google Scholar 

  7. L. Wu, J. Bi, Z. Li, X. Wang, and X. Fu: Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis. Catal. Today 131 (1), 15–20 (2008).

    Article  CAS  Google Scholar 

  8. X. Bai, C. Sun, S. Wu, and Y. Zhu: Enhancement of photocatalytic performance via a P3HT-g-C3N4 heterojunction. J. Mater. Chem. A 3 (6), 2741–2747 (2015).

    Article  CAS  Google Scholar 

  9. N. Tian, H. Huang, Y. Zhang, and Y. He: Enhanced photocatalytic activities on Bi2O2CO3/ZnWO4 nanocomposites. J. Mater. Res. 29 (05), 641–648 (2014).

    Article  CAS  Google Scholar 

  10. H. Fu, L. Zhang, W. Yao, and Y. Zhu: Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl. Catal., B 66 (1), 100–110 (2006).

    Article  CAS  Google Scholar 

  11. M. Wang, Z. Qiao, M. Fang, Z. Huang, Y.G. Liu, X. Wu, C. Tang, H. Tang, and H. Zhu: Synthesis of Er-doped Bi2WO6 and enhancement in photocatalytic activity induced by visible light. RSC Adv. 5 (115), 94887–94894 (2015).

    Article  CAS  Google Scholar 

  12. N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, and Y. Zhang: Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44 (9), 4297–4307 (2015).

    Article  CAS  Google Scholar 

  13. B. Chai, F. Zou, and W. Chen: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30 (08), 1128–1136 (2015).

    Article  CAS  Google Scholar 

  14. N. Tian, H. Huang, Y. He, Y. Guo, and Y. Zhang: Organic–inorganic hybrid photocatalyst g-C3N4/Ag2CO3 with highly efficient visible-light-active photocatalytic activity. Colloids Surf., A 467, 188–194 (2015).

    Article  CAS  Google Scholar 

  15. Y. Li, S. Wu, L. Huang, H. Xu, R. Zhang, M. Qu, Q. Gao, and H. Li: g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. J. Phys. Chem. Solids 76, 112–119 (2015).

    Article  CAS  Google Scholar 

  16. S.Z. Wu, K. Li, and W.D. Zhang: On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 324, 324–331 (2015).

    Article  CAS  Google Scholar 

  17. J. Fu, B. Chang, Y. Tian, F. Xi, and X. Dong: Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: In situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 1 (9), 3083–3090 (2013).

    Article  CAS  Google Scholar 

  18. Y. Ke, H. Guo, D. Wang, J. Chen, and W. Weng: ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation. J. Mater. Res. 29 (20), 2473–2482 (2014).

    Article  CAS  Google Scholar 

  19. D. Jiang, L. Chen, J. Zhu, M. Chen, W. Shi, and J. Xie: Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: Facile synthesis and enhanced photocatalytic activity. Dalton Trans. 42 (44), 15726–15734 (2013).

    Article  CAS  Google Scholar 

  20. L. Zhang, K.H. Wong, Z. Chen, C.Y. Jimmy, J. Zhao, C. Hu, C.Y. Chan, and P.K. Wong: AgBr-Ag-Bi2WO6 nanojunction system: A novel and efficient photocatalyst with double visible-light active components. Appl. Catal., A 363 (1), 221–229 (2009).

    Article  CAS  Google Scholar 

  21. H. Fu, C. Pan, L. Zhang, and Y. Zhu: Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Mater. Res. Bull. 42 (4), 696–706 (2007).

    Article  CAS  Google Scholar 

  22. J. Xu, Y. Ao, and M. Chen: A simple method for the preparation of Bi2WO6-reduced graphene oxide with enhanced photocatalytic activity under visible light irradiation. Mater. Lett. 92, 126–128 (2013).

    Article  CAS  Google Scholar 

  23. D.K. Ma, S.M. Zhou, X. Hu, Q.R. Jiang, and S.M. Huang: Hierarchical BiOI and hollow Bi2WO6 microspheres: Topochemical conversion and photocatalytic activities. Mater. Chem. Phys. 140 (1), 11–15 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was financially supported by the National Natural Science Foundation of China (NSFC Grant No. 51572245)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghao Fang or Zhaohui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Fang, M., Tang, C. et al. A C3N4/Bi2WO6 organic-inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. Journal of Materials Research 31, 713–720 (2016). https://doi.org/10.1557/jmr.2016.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.72

Navigation