Skip to main content
Log in

The effect of dynamic strain aging on fatigue property for 316L stainless steel

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of strain range on dynamic strain aging (DSA) is discussed based on the low cycle fatigue tests for different strain ranges conducted for 316L stainless steel at strain rate of 1 × 10−3 s−1. The variations of stress drop and hardening ratio are both compared for different strain ranges. The variations of stress drop are attributed to the dependence of vacancy concentration on strain range. The hardening ratio is higher at 600 °C than those at 20 °C and secondary hardening behavior occurs for larger strain range. The dependence of DSA on the number of cycles and the wave type for different stages are analyzed. Obvious DSA is observed in first few cycles, followed by weakening serrated yielding. However, the serrated yielding occurs again before fatigue failure. The difference of serrated yielding can be explained by the types of atom atmospheres at different cycles. A serrated wave is observed for smaller strain ranges, however, A, B, A + B, C, and B + C serrated waves can be found at different cycles for larger strain range. Finally, the crack nucleation and propagation on fracture surfaces are characterized by scanning electron microscope (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S.G. Hong, S.B. Lee, and T.S. Byun: Temperature effect on the low-cycle fatigue behavior of type 316L stainless steel: Cyclic non-stabilization and an invariable fatigue parameter. Mater. Sci. Eng., A 457, 139–147 (2007).

    Article  Google Scholar 

  2. H.F. Jiang, X.D. Chen, Z.C. Fan, J. Dong, H. Jiang, and S.X. Lu: Dynamic strain aging in stress controlled creep–fatigue tests of 316L stainless steel under different loading conditions. J. Nucl. Mater. 392, 494–497 (2009).

    Article  CAS  Google Scholar 

  3. A. Portevin and F. Le Chatelier: Sur un phénomène observé lors de l’essai detraction d’alliages encours de transformation. Comptes Rendus de l’Académiedes Science 176, 507–510 (1923).

    CAS  Google Scholar 

  4. A.H. Cottrell: A note on the Portevin-Le Chatelier effect. Philos. Mag. 44, 829–832 (1953).

    Article  CAS  Google Scholar 

  5. P.G. McCormick: A model for the Portevin-Le Chatelier effect in substitutional alloys. Acta Metall. 20, 351–354 (1972).

    Article  CAS  Google Scholar 

  6. A. Van den Beukel: Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi. 30, 197–206 (1975).

    Article  Google Scholar 

  7. G. Schoeck: The Portevin-Le Chatelier. A kinetic theory. Acta Metall. 32, 1229–1234 (1984).

    Article  CAS  Google Scholar 

  8. L.G. Xiao, X.Q. Li, and K.W. Qian: A model for the occurrence of serrated yielding in substitutional alloys. Sci. China, Ser. A: Math., Phys., Astron. Technol. Sci. 11, 1386–1396 (1990).

    Google Scholar 

  9. K. Kanazawa, K. Yamaguchi, and S. Nishijima: Mapping of low cycle fatigue mechanism at elevated temperatures for an austenitic steel. Low Cycle Fatigue. ASTM-STP942 (1988); pp. 519–530.

    Chapter  Google Scholar 

  10. V.S. Srinivasan, R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, and K.S. Raghavan: Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel. Int. J. Fatigue 13, 471–478 (1991).

    Article  CAS  Google Scholar 

  11. V.S. Srinivasan, M. Valsan, R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, and D.H. Sastry: High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel. Int. J. Fatigue 21, 11–21 (1999).

    Article  CAS  Google Scholar 

  12. S.G. Hong, K.O. Lee, and S.B. Lee: Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel. Int. J. Fatigue 27, 1420–1424 (2005).

    Article  CAS  Google Scholar 

  13. H.F. Jiang, X.D. Chen, Z.C. Fan, J. Dong, H. Jiang, and S.X. Lu: Influence of dynamic strain aging pre-treatment on creep-fatigue behavior in 316L stainless steel. Mater. Sci. Eng., A 500, 98–103 (2009).

    Article  Google Scholar 

  14. A. Sarkar, A. Nagesha, R. Sandhya, and M.D. Mathew: On the dynamic strain aging effects during elevated temperature ratcheting of type 316LN stainless steel. High Temp. Mater. Processes 32, 475–484 (2013).

    Article  CAS  Google Scholar 

  15. B.K. Choudhary: Activation energy for serrated flow in type 316L(N) austenitic stainless steel. Mater. Sci. Eng., A 603, 160–168 (2014).

    Article  CAS  Google Scholar 

  16. A.K. Gupta, S.K. Singh, S. Reddy, and G. Hariharan: Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network. Mater. Des. 35, 589–595 (2012).

    Article  CAS  Google Scholar 

  17. M.S. Pham and S.R. Holdsworth: Dynamic strain ageing of AISI 316L during cyclic loading at 300 °C: Mechanism, evolution, and its effects. Mater. Sci. Eng., A 556, 122–133 (2012).

    Article  CAS  Google Scholar 

  18. L.J. Chen, C.Y. Wang, W. Wu, Z. Liu, G.M. Stoica, L. Wu, and P.K. Liaw: Low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy. Metall. Mater. Trans. A 38, 2235–2241 (2007).

    Article  Google Scholar 

  19. G.C. Chai and M. Andersson: Secondary hardening behavior in super duplex stainless steels during LCF in dynamic strain ageing regime. Protein Eng. 55, 123–127 (2013).

    CAS  Google Scholar 

  20. S.G. Hong, Y. Samson, and S.B. Lee: The effect of temperature on low-cycle fatigue behavior of prior cold worked 316L stainless steel. Int. J. Fatigue 25, 1293–1300 (2003).

    Article  CAS  Google Scholar 

  21. G.V. Prasad Reddy, R. Sandhya, M.D. Mathew, and S. Sankaran: Influence of secondary cyclic hardening on the low cycle fatigue behavior of nitrogen alloyed 316LN stainless steel. Metall. Mater. Trans. A 44, 5625–5629 (2013).

    Article  Google Scholar 

  22. D.J. Yu, W.W. Yu, G. Chen, F.M. Jin, and X. Chen: Role of dynamic strain aging in the tensile property, cyclic deformation and fatigue behavior of Z2CND18.12N stainless steel between 293 K and 723 K. Mater. Sci. Eng., A 558, 731–736 (2012).

    Article  Google Scholar 

  23. P. Rodriguez: Serrated plastic flow. Bull. Mater. Sci. 6, 653–663 (1984).

    Article  Google Scholar 

  24. G. Sudhakar Rao, J.K. Chakravartty, S. Nudurupati, G.S. Mahobia, K. Chattopadhyay, N.C. SanthiSrinivas, and V. Singh: Low cycle fatigue behavior of Zircaloy-2 at room temperature. J. Nucl. Mater. 441, 455–467 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful to the supports of the projects of National Natural Science of Foundation of China (11102119) and Key Project of Chinese National Programs for Fundamental Research and Development (973 Program, 2011CB706504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Li, J. & Shao, N. The effect of dynamic strain aging on fatigue property for 316L stainless steel. Journal of Materials Research 31, 627–634 (2016). https://doi.org/10.1557/jmr.2016.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.49

Navigation