Skip to main content
Log in

Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

By using high purity aluminum powders and multi-walled carbon nanotubes (MWCNTs) as raw materials, MWCNTs/Al composites were fabricated with ball milling, followed by cold pressing, vacuum sintering, and hot extrusion. It was found that when the sintering temperature was 863 K, MWCNTs/Al composite sintered for 4 h showed good comprehensive properties, and its tensile strength and elongation reached to 156 MPa and 21%, respectively. The comprehensive mechanical properties of the composites became better with raising sintering temperature when the sintering time was 4 h. When the sintering temperature raised to 923 K, the tensile strength of the composite reached to 167 MPa which is three times more than that of annealed high purity aluminum, mainly due to the higher density and better interface bonding resulted from higher sintering temperature. CNTs’ pulling out were observed obviously in the fractured surfaces, and load transfer may be the main strengthening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. Z. Wang, R.T. Qu, S. Scudino, B.A. Sun, K.G. Prashanth, D.V. Louzguine-Luzgin, M.W. Chen, Z.F. Zhang, and J. Eckert: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7 (12), e229 (2015).

    Article  CAS  Google Scholar 

  2. S. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55 (1), 41 (2010).

    Article  CAS  Google Scholar 

  3. L. Teng, C.J. Li, Q. Yuan, Q.X. Zhang, Y. Xi, C.H. Li, R. Bao, and X.K. Zhu: Progress of carbon nanotubes reinforced copper matrix composites. Mater. Rev. 28 (7), 16 (2014).

    CAS  Google Scholar 

  4. A. Agarwal, S.R. Bakshi, and D. Lahiri: Carbon Nanotubes Reinforced Metal Matrix Composites (CRC Press, New York, 2010).

    Google Scholar 

  5. T. Laha, Y. Chen, D. Lahiri, and A. Agarwal: Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites, Part A 40 (5), 589 (2009).

    Article  Google Scholar 

  6. S. Bal and S.S. Samal: Carbon nanotube reinforced polymer composites—A state of the art. Bull. Mater. Sci. 30 (4), 379 (2007).

    Article  CAS  Google Scholar 

  7. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli: Mechanical properties of carbon nanotubes. Appl. Phys. A. 69 (3), 255 (1999).

    Article  CAS  Google Scholar 

  8. S. Iijima, C. Brabec, A. Maiti, and J. Bernholc: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104 (5), 2089 (1996).

    Article  CAS  Google Scholar 

  9. P.M. Ajayan and J.M. Tour: Materials science—Nanotube composites. Nature 447 (7148), 1066 (2007).

    Article  CAS  Google Scholar 

  10. A.D. Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—A review. Composites, Part B 77, 402 (2015).

    Article  Google Scholar 

  11. H. Kwon, G.G. Lee, S.G. Kim, B.W. Lee, W.C. Seo, and M. Leparoux: Mechanical properties of nanodiamond and multi-walled carbon nanotubes dual-reinforced aluminum matrix composite materials. Mater. Sci. Eng., A 632, 72 (2015).

    Article  CAS  Google Scholar 

  12. J.G. Park, H.K. Dong, and Y.H. Lee: Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon 95, 690 (2015).

    Article  CAS  Google Scholar 

  13. C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, and M. Leparoux: Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites. J. Alloys Compd. 585 (3), 362 (2014).

    Article  CAS  Google Scholar 

  14. V. Trinh Pham, H.T. Bui, B.T. Tran, V.T. Nguyen, D.Q. Le, X.T. Than, V.C. Nguyen, D.P. Doan, and N.M. Phan: The effect of sintering temperature on the mechanical properties of a Cu/CNT nanocomposite prepared via a powder metallurgy method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (1), 015006 (2011).

    Google Scholar 

  15. X.N. Hao, H.P. Zhang, R.X. Zheng, Y.T. Zhang, K. Ameyama, and M.A. Chao-Li: Effect of mechanical alloying time and rotation speed on evolution of CNTs/Al-2024 composite powders. Trans. Nonferrous Met. Soc. China 24 (7), 2380 (2014).

    Article  CAS  Google Scholar 

  16. R. Pérez-Bustamante, I. Estrada-Guel, W. Antúnez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martínez-Sánchez: Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. J. Alloys Compd. 450 (1–2), 323 (2008).

    Article  Google Scholar 

  17. Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma: Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Composites, Part A 43 (12), 2161 (2012).

    Article  CAS  Google Scholar 

  18. P. Chandran, T. Sirimuvva, N. Nayan, A.K. Shukla, S.V.S.N. Murty, S.L. Pramod, S.C. Sharma, and S.R. Bakshi: Effect of carbon nanotube dispersion on mechanical properties of aluminum–silicon alloy matrix composites. J. Mater. Eng. Perform. 23 (3), 1028 (2014).

    Article  CAS  Google Scholar 

  19. M. Mazaheri, S.A. Hassanzadeh-Tabrizi, and S.K. Sadrnezhaad: Hot pressing of nanocrystalline zinc oxide compacts: Densification and grain growth during sintering. Ceram. Int. 35 (3), 991 (2008).

    Article  Google Scholar 

  20. R. Pérez-Bustamante, I. Estrada-Guel, P. Amézaga-Madrid, M. Miki-Yoshida, J.M. Herrera-Ramírez, and R. Martínez-Sánchez: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. Mater. Sci. Eng., A 495 (2), 399 (2010).

    Google Scholar 

  21. I. Sridhar and K.R. Narayanan: Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44 (7), 1750 (2009).

    Article  CAS  Google Scholar 

  22. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Rühle: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 54 (20), 5367 (2006).

    Article  CAS  Google Scholar 

  23. R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, and R. Martínez-Sánchez: Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Mater. Sci. Eng., A 502 (1–2), 159 (2009).

    Article  Google Scholar 

  24. Z. Li, L. Jiang, G. Fan, Y. Xu, D. Zhang, Z. Chen, and S. Humphries: High volume fraction and uniform dispersion of carbon nanotubes in aluminium powders. Micro Nano Lett. 5 (6), 379 (2010).

    Article  CAS  Google Scholar 

  25. Z. Wang, K. Georgarakis, K.S. Nakayama, Y. Li, A.A. Tsarkov, G. Xie, D. Dudina, D.V. Louzguine-Luzgin, and A.R. Yavari: Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 6, 24384 (2016).

    Article  CAS  Google Scholar 

  26. F. Housaer, F. Beclin, M. Touzin, D. Tingaud, A. Legris, and A. Addad: Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater. Charact. 110, 94 (2015).

    Article  CAS  Google Scholar 

  27. X. Zhu, Y-G. Zhao, M. Wu, H-Y. Wang, and Q-C. Jiang: Fabrication of 2014 aluminum matrix composites reinforced with untreated and carboxyl-functionalized carbon nanotubes. J. Alloys Compd. 674, 145 (2016).

    Article  CAS  Google Scholar 

  28. H.J. Choi, J.H. Shin, and D.H. Bae: The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Composites, Part A 43 (7), 1061 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors acknowledge professor Ming Xie at Kunming Institution of Precious Metals in China for technical assistance and Dr. Benxin Wu at Purdue University in the United States for helpful discussions. Additional financial supports provided by the Natural Science Foundation of Yunnan Provincial Science and Technology Department (grant 2014FC001 and 2011FB021), Natural Science Foundation of Kunming university of Science and Technology (grant KKSY201551036), Undergraduate Innovation and Entrepreneurship Training Program of Kunming university of Science and Technology (grant 201510674071), and National Natural Science Foundation of China (grant 51361017) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiju Li or Jianhong Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, X., Yi, J. et al. Effects of sintering parameters on the microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Journal of Materials Research 31, 3757–3765 (2016). https://doi.org/10.1557/jmr.2016.436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.436

Navigation