Skip to main content
Log in

Evolution behavior of superlattice phase with Pt2Mo-type structure in Ni-Cr-Mo alloy with low atomic Mo/Cr ratio

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The evolution behavior of Ni2(Cr, Mo) phase with Pt2Mo-type structure in the Ni-Cr-Mo alloy with a low atomic Mo/Cr ratio subjected to a long-term thermal exposure of 100–340 h at 600 °C was investigated using transmission electron microscopy and microhardness. Results demonstrate that there is a linear relationship between major axis cube (L3) of ordered domain and thermal exposure time (t) followed by a coarsening regime described by the Lifshitz-Slyozov-Wagner model, as well as between the aspect ratio (D) of ordered domain and thermal exposure time. The volume fraction of ordered domain increases with increasing thermal exposure time, whereas the hardening of samples decreases due to growth-coarsening of ordered domain. Prolonged thermal exposure time led to the coarsening of ordered domain by rate of (3.39 ± 0.02) × 10−30 m3/s without changing their crystallography and ordering characteristics during thermal exposure. Plastic deformation before thermal exposure do not lead to decomposition of initial Ni2(Cr, Mo) phase, but both plastic deformation and thermal exposure affect their morphology and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. X.R. Zhang, D. Zagidulin, and D.W. Shoesmith: Characterization of film properties on the Ni–Cr–Mo alloy C-2000. Electrochim. Acta 89, 814 (2013).

    Article  CAS  Google Scholar 

  2. Q.Y. Wang, Y.F. Zhang, S.L. Bai, and Z.D. Liu: Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding. J. Alloys Compd. 553, 253 (2013).

    Article  CAS  Google Scholar 

  3. P. Jakupi, J.J. Noël, and D.W. Shoesmith: The evolution of crevice corrosion damage on the Ni–Cr–Mo–W alloy-22 determined by confocal laser scanning microscopy. Corros. Sci. 54, 260 (2012).

    Article  CAS  Google Scholar 

  4. S. Delpech, C. Cabet, C. Slim, and G.S. Picard: Molten fluorides for nuclear applications. Mater. Today 13, 34 (2010).

    Article  CAS  Google Scholar 

  5. Q.M. Guo, D.F. Li, S.L. Guo, H.J. Peng, and J. Hu: The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy. J. Nucl. Mater. 414, 440 (2011).

    Article  CAS  Google Scholar 

  6. D. Kaoumi and K. Hrutkay: Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617. J. Nucl. Mater. 454, 265 (2014).

    Article  CAS  Google Scholar 

  7. X. Chen, Z.Q. Yang, M.A. Sokolov, D.L. Erdman, K. Mo, and J.F. Stubbins: Effect of creep and oxidation on reduced fatigue life of Ni-based alloy 617 at 850 °C. J. Nucl. Mater. 444, 393 (2014).

    Article  CAS  Google Scholar 

  8. M. Kumar and V.K. Vasudevan: Ordering reactions in an Ni–25Mo–8Cr alloy. Acta Mater. 44, 1591 (1996).

    Article  CAS  Google Scholar 

  9. H.M. Tawancy: Synthesis of bulk nanostructured DO22 superlattice of Ni3(Mo, Nb) with high strength, high ductility, and high thermal stability. J. Nanomater. 2012, 1 (2012).

    Article  Google Scholar 

  10. H.M. Tawancy and M.O. Aboelfotoh: Application of long-range ordering in the synthesis of a nanoscale Ni2(Cr, Mo) superlattice with high strength and high ductility. Mater. Sci. Eng., A 500, 188 (2009).

    Article  Google Scholar 

  11. Y.H. Hou, Y.P. Li, E. Onodera, C. Zhang, Y. Koizumi, and A. Chiba: Ex-situ observation on the dissolution behaviour of Ni–16Cr–15Mo and Ni–30Co–16Cr–15Mo alloys in hydrofluoric acid. Corros. Sci. 90, 133 (2015).

    Article  CAS  Google Scholar 

  12. Y.P. Zeng, L.Z. Kou, and X.S. Xie: Influence of thermal exposure on the precipitates and mechanical properties of a newly developed Ni–21Cr–17Mo alloy. Mater. Sci. Eng., A 560, 611 (2013).

    Article  CAS  Google Scholar 

  13. P.E.A. Turchia, L. Kaufmanb, and Z.K. Liu: Modeling of Ni–Cr–Mo based alloys: Part I—phase stability. CALPHAD 30, 70 (2006).

    Article  Google Scholar 

  14. Y. Wang, C. Woodward, S.H. Zhou, Z.K. Liu, and L.Q. Chen: Structural stability of Ni–Mo compounds from first-principles calculations. Scr. Mater. 52, 17 (2005).

    Article  CAS  Google Scholar 

  15. A. Verma, J.B. Singh, N. Wanderka, and J.K. Chakravartty: Delineating the roles of Cr and Mo during ordering transformations in stoichiometric Ni2(Cr1−x, Mox) alloys. Acta Mater. 96, 366 (2015).

    Article  CAS  Google Scholar 

  16. R. Hu, G.M. Cheng, J.Q. Zhang, J.S. Li, T.B. Zhang, and H.Z. Fu: First principles investigation on the stability and elastic properties of Ni2Cr1−xMx (M = Nb, Mo, Ta, and W) superlattices. Intermetallics 33, 60 (2013).

    Article  CAS  Google Scholar 

  17. H.C. Pai, M. Sundararaman, B.C. Maji, A. Biswas, and M. Krishnan: Influence of Mo addition on the solvus temperature of Ni2(Cr, Mo) phase in Ni2(Cr, Mo) alloys. J. Alloys Compd. 491, 159 (2010).

    Article  CAS  Google Scholar 

  18. S. Dymek, M. Wróbel, and M. Dollar: Environmentally assisted dynamic embrittlement in a long range ordered Ni–Mo–Cr alloy. Scr. Mater. 43, 343 (2000).

    Article  CAS  Google Scholar 

  19. A. Arya, G.K. Dey, V.K. Vasudevan, and S. Banerjee: Effect of chromium addition on the ordering behaviour of Ni–Mo alloy: Experimental results vs. electronic structure calculations. Acta Mater. 50, 3301 (2002).

    Article  CAS  Google Scholar 

  20. N.S. Mishra and S. Ranganathan: Electron microscopy and diffraction of ordering in Ni–W alloys. Acta Metall. Mater. 43, 2287 (1995).

    Article  CAS  Google Scholar 

  21. U.D. Kulkarni and G.K. Dey: Ordering and topologically close packed-phase precipitation in a Ni–25 at.% Mo–5 at.% Al alloy. Acta Mater. 52, 2711 (2004).

    Article  CAS  Google Scholar 

  22. S. Dymek, M. Wróbel, M. Dollar, and M. Blicharski: Influence of plastic deformation and prolonged ageing time on microstructure of a Haynes 242 alloy. J. Microsc. 224, 24 (2006).

    Article  CAS  Google Scholar 

  23. Y.L. Lu, L.M. Pike, C.R. Brooks, P.K. Liaw, and D.L. Klarstrom: Strengthening domains in a Ni–21Cr–17Mo alloy. Scr. Mater. 56, 121 (2007).

    Article  CAS  Google Scholar 

  24. X.M. Li, J.W. Bai, P.P. Liu, Y.M. Zhu, X.S. Xie, and Q. Zhan: Coherent Ni2(Cr, Mo) precipitates in Ni–21Cr–17Mo superalloy. J. Alloys Compd. 559, 81 (2013).

    Article  CAS  Google Scholar 

  25. P.E.A. Turchi, L. Kaufman, and Z.K. Liu: Modeling of Ni–Cr–Mo based alloys: Part II—kinetics. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 31, 237 (2007).

    Article  CAS  Google Scholar 

  26. Y. Chen, B. Tang, G.L. Xu, C.W. Wang, H.C. Kou, J.S. Li, and Y.W. Cui: Diffusion research in BCC Ti–Al–Mo ternary alloys. Metall. Mater. Trans. A 45, 1647 (2014).

    Article  CAS  Google Scholar 

  27. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Some aspects of the precipitation of metastable intermetallic phases in Inconel 718. Metall. Trans. A 23, 2015 (1992).

    Article  Google Scholar 

  28. I.M. Lifshitz and V.V. Slyozov: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35 (1961).

    Article  Google Scholar 

  29. C.K. Sudbrack, K.E. Yoon, R.D. Noebe, and D.N. Seidman: Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy. Acta Mater. 54, 3199 (2006).

    Article  CAS  Google Scholar 

  30. V.D. Divya, S.S.K. Balam, U. Ramamurty, and A. Paul: Interdiffusion in the Ni–Mo system. Scr. Mater. 62, 621 (2010).

    Article  CAS  Google Scholar 

  31. S.K. Das and G. Thomas: The metastable phase Ni2Mo and the initial stages of ordering in Ni–Mo alloys. Phys. Status Solidi 21, 177 (1974).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support was given by the National High Technology Research and Development Program of China (No. 2013AA031004) and the National Natural Science Foundation of China (No. 51171150), and the Program of Introducing Talents of Discipline to Universities (No. B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Hu, R. & Li, J. Evolution behavior of superlattice phase with Pt2Mo-type structure in Ni-Cr-Mo alloy with low atomic Mo/Cr ratio. Journal of Materials Research 31, 427–434 (2016). https://doi.org/10.1557/jmr.2016.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.34

Navigation