Skip to main content
Log in

Near-zero thermal expansion and phase transition in In0.5(ZrMg)0.75Mo3O12

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Physical properties of In0.5(ZrMg)0.75Mo3O12, including the coefficient of thermal expansion, phase stability, hygroscopicity, and decomposition temperature have been thoroughly studied by in situ x-ray powder diffraction, Raman spectroscopy and thermal methods. These investigations show that In0.5(ZrMg)0.75Mo3O12 exists in a monoclinic phase (P 21/ a) at room temperature and transforms to an orthorhombic (Pbcn) phase at ∼82 °C. In the orthorhombic form this material presents intrinsic near-zero thermal expansion (−0.16 × 10−6 K−1) in the range between 100 and 500 °C. The phase is not hygroscopic, but starts to decompose into its constituent oxides at temperatures higher than 700 °C. In comparison to the end member phase ZrMgMo3O12 in the In2Mo3O12–ZrMgMo3O12 solid solution, In0.5(ZrMg)0.75Mo3O12 is less promising for near room-temperature applications due to the phase transition from monoclinic to orthorhombic slightly above room temperature. However, the orthorhombic phase of In0.5(ZrMg)0.75Mo3O12 has potential for applications that require zero thermal expansion at temperatures higher than 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.S.O. Evans, T.A. Mary, and A.W. Sleight: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 (1997).

    Article  CAS  Google Scholar 

  2. C.P. Romao, K.J. Miller, C.A. Whitman, M.A. White, and B.A. Marinkovic: Negative thermal expansion (thermomiotic) materials. In Comprehensive Inorganic Chemistry II, Vol. 4, J. Reedijk and K. Poeppelmeier, eds. (Elsevier: Oxford, 2013); p. 128–151.

    Google Scholar 

  3. C. Lind: Two decades of negative thermal expansion research: Where do we stand? Materials 5 (6), 1125 (2012).

    Article  CAS  Google Scholar 

  4. J.S.O. Evans: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 19, 3317 (1999).

    Article  Google Scholar 

  5. J.S.O. Evans, T.A. Mary, and A.W. Sleight: Negative thermal expansion materials. Phys. B Condens. Matter. 241–243, 311 (1997).

    Article  Google Scholar 

  6. S. Sumithra and A.M. Umarji: Negative thermal expansion in rare earth molybdates. Solid State Sci. 8 (12), 1453 (2006).

    Article  CAS  Google Scholar 

  7. M. Ari, P.M. Jardim, B.A. Marinkovic, F. Rizzo, and F.F. Ferreira: Thermal expansion of Cr2x Fe2−2 xMo3O12, Al2 xFe2−2 xMo3O12 and Al2 xCr2−2 xMo3O12 solid solutions. J. Solid State Chem. 181 (6), 1472 (2008).

    Article  CAS  Google Scholar 

  8. T. Varga, J.L. Moats, S.V. Ushakov, and A. Navrotsky: Thermochemistry of A2M3O12 negative thermal expansion materials. J. Mater. Res. 22 (9), 2512 (2007).

    Article  CAS  Google Scholar 

  9. A.L. Goodwin, S.A. Wells, and M.T. Dove: Cation substitution and strain screening in framework structures: The role of rigid unit modes. Chem. Geol. 225 (3–4), 213 (2006).

    Article  CAS  Google Scholar 

  10. K.J. Miller, M.B. Johnson, M.A. White, and B.A. Marinkovic: Low-temperature investigations of the open-framework material HfMgMo3O12. Solid State Commun. 152 (18), 1748 (2012).

    Article  CAS  Google Scholar 

  11. J.S.O. Evans and T.A. Mary: Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int. J. Inorg. Mater. 2 (1), 143 (2000).

    Article  CAS  Google Scholar 

  12. B.A. Marinkovic, P.M. Jardim, R.R. de Avillez, and F. Rizzo: Negative thermal expansion in Y2Mo3O12. Solid State Sci. 7 (11), 1377 (2005).

    Article  CAS  Google Scholar 

  13. B.A. Marinkovic, M. Ari, R.R. de Avillez, F. Rizzo, F.F. Ferreira, K.J. Miller, M.B. Johnson, and M.A. White: Correlation between AO6 polyhedral distortion and negative thermal expansion in orthorhombic Y2Mo3O12 and related materials. Chem. Mater. 21 (13), 2886 (2009).

    Article  CAS  Google Scholar 

  14. M.M. Wu, Y. Zu, J. Peng, R.D. Liu, Z.B. Hu, Y.T. Liu, and D.F. Chen: Controllable thermal expansion properties of In2−xCrxMo3O12. Cryst. Res. Technol. 47 (7), 793 (2012).

    Article  CAS  Google Scholar 

  15. C.P. Romao, F.A. Perras, U. Werner-Zwanziger, J.A. Lussier, K.J. Miller, C.M. Calahoo, J.W. Zwanziger, M. Bieringer, B.A. Marinkovic, D.L. Bryce, and M.A. White: Zero thermal expansion in ZrMgMo3O12: NMR crystallography reveals origins of thermoelastic properties. Chem. Mater. 27 (7), 2633 (2015).

    Article  CAS  Google Scholar 

  16. K.J. Miller, C.P. Romao, M. Bieringer, B.A. Marinkovic, L.P. Prisco, and M.A. White: Near-zero thermal expansion in In(HfMg)0.5Mo3O12. J. Am. Ceram. Soc. 96 (2), 561 (2012).

    Article  Google Scholar 

  17. W. Song, B. Yuan, X. Liu, Z. Li, J. Wang, and E. Liang: Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional co-incorporation of Zr4+ and Mg2+. J. Mater. Res. 29 (7), 849 (2014).

    Article  CAS  Google Scholar 

  18. A.M. Gindhart, C. Lind, and M. Green: Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. J. Mater. Res. 23 (1), 210 (2008).

    Article  CAS  Google Scholar 

  19. B.A. Marinkovic, P.M. Jardim, M. Ari, R.R. De Avillez, F. Rizzo, and F.F. Ferreira: Low positive thermal expansion in HfMgMo3O12. Phys. Status Solidi 245 (11), 2514 (2008).

    Article  CAS  Google Scholar 

  20. W.B. Song, E.J. Liang, X.S. Liu, Z.Y. Li, B.H. Yuan, and J.Q. Wang: A negative thermal expansion material of ZrMgMo3O12. Chin. Phys. Lett. 30 (12), 126502 (2013).

    Article  Google Scholar 

  21. W.B. Song, J.Q. Wang, Z.Y. Li, X.S. Liu, B.H. Yuan, and E.J. Liang: Phase transition and thermal expansion property of Cr2−xZr0.5 xMg0.5 xMo3O12 solid solution. Chin. Phys. B 23 (6), 066501 (2014).

    Article  Google Scholar 

  22. F. Li, X. Liu, W. Song, B. Yuan, Y. Cheng, H. Yuan, F. Cheng, M. Chao, and E. Liang: Phase transition, crystal water and low thermal expansion behavior of Al2−2 x(ZrMg)xW3O12· n (H2O). J. Solid State Chem. 218, 15 (2014).

    Article  CAS  Google Scholar 

  23. T. Suzuki and A. Omote: Zero thermal expansion in (Al2 x(HfMg)1−x)(WO4)3. J. Am. Ceram. Soc. 89 (2), 691 (2006).

    Article  CAS  Google Scholar 

  24. A.W. Sleight and L.H. Brixner: A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J. Solid State Chem. 7 (2), 172 (1973).

    Article  CAS  Google Scholar 

  25. B.A. Marinkovic, M. Ari, P.M. Jardim, R.R. de Avillez, F. Rizzo, and F.F. Ferreira: In2Mo3O12: A low negative thermal expansion compound. Thermochim. Acta 499 (1–2), 48 (2010).

    Article  CAS  Google Scholar 

  26. M. Pley and M.S. Wickleder: Two crystalline modifications of RuO4. J. Solid State Chem. 178 (10), 3206 (2005).

    Article  CAS  Google Scholar 

  27. W. Paraguassu, M. Maczka, A.G.S. Filho, P.T.C. Freire, F.E.A. Melo, J.M. Filho, and J. Hanuza: A comparative study of negative thermal expansion materials Sc2(MoO4)3 and Al2(WO4)3 crystals. Vib. Spectrosc. 44 (1), 69 (2007).

    Article  CAS  Google Scholar 

  28. M. Wojdyr: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43 (5 Part 1), 1126 (2010).

    Article  CAS  Google Scholar 

  29. V. Sivasubramanian, T.R. Ravindran, R. Nithya, and A.K. Arora: Structural phase transition in indium tungstate. J. Appl. Phys. 96 (1), 387 (2004).

    Article  CAS  Google Scholar 

  30. A.C. Torres Dias, C. Luz Lima, W. Paraguassu, K. Pereira Da Silva, P.T.C. Freire, J. Mendes Filho, B.A. Marinkovic, K.J. Miller, M.A. White, and A.G. Souza Filho: Pressure-induced crystal-amorphous transformation in Y2Mo3O12. Vib. Spectrosc. 68, 251 (2013).

    Article  Google Scholar 

  31. M. Maczka, W. Paraguassu, A.G. Souza Filho, P.T.C. Freire, J. Mendes Filho, F.E.A. Melo, and J. Hanuza: High-pressure Raman study of Al2(WO4)3. J. Solid State Chem. 177 (6), 2002 (2004).

    Article  CAS  Google Scholar 

  32. Q.J. Li, B.H. Yuan, W.B. Song, E.J. Liang, and B. Yuan: The phase transition, hygroscopicity, and thermal expansion properties of Yb2−xAlxMo3O12. Chin. Phys. B 21 (4), 046501 (2012).

    Article  Google Scholar 

  33. T.R. Ravindran, V. Sivasubramanian, and A.K. Arora: Low temperature Raman spectroscopic study of scandium molybdate. J. Phys. Condens. Matter 17 (2), 277 (2005).

    Article  CAS  Google Scholar 

  34. W.T.A. Harrison, A.K. Cheetham, and J. Faber: The crystal structure of aluminum molybdate, Al2(MoO4)3, determined by time-of-flight powder neutron diffraction. J. Solid State Chem. 76 (2), 328 (1988).

    Article  CAS  Google Scholar 

  35. J.S.O. Evans, T.A. Mary, and A.W. Sleight: Negative thermal expansion in Sc2(WO4)3. J. Solid State Chem. 137 (1), 148 (1998).

    Article  CAS  Google Scholar 

  36. V. Srikanth, E.C. Subbarao, and G.V. Rao: Thermal expansion anisotropy, microcracking and acoustic emission of Nb2O5 ceramics. Ceram. Int. 18 (4), 251 (1992).

    Article  CAS  Google Scholar 

  37. P.M. Jardim, E.S. Garcia, and B.A. Marinkovic: Young’s modulus, hardness and thermal expansion of sintered Al2W3O12 with different porosity fractions. Ceram. Int. 42 (4), 5211 (2016).

    Article  CAS  Google Scholar 

  38. C.B. Carter and M.G. Norton: Ceramic Materials (Springer, New York, NY, 2013).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

B.A.M. is grateful to CNPq (National Council for Scientific and Technological Development) for a Research Productivity Grant. L.P.P. and P.I.P. are grateful to CNPq for scholarships. The authors are grateful to undergraduate student Gabriella Faro for technical assistance. This study was supported by the NSERC Canada (grants to M.A.W.), and the Canada Foundation for Innovation, the Atlantic Innovation Fund and other partners that fund the Facilities for Materials Characterization managed by the Institute for Research in Materials at Dalhousie University. Aspects of this study were sponsored by the Department of the Army, U.S. Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan A. Marinkovic.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prisco, L.P., Pontón, P.I., Paraguassu, W. et al. Near-zero thermal expansion and phase transition in In0.5(ZrMg)0.75Mo3O12. Journal of Materials Research 31, 3240–3248 (2016). https://doi.org/10.1557/jmr.2016.329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.329

Navigation