Skip to main content
Log in

Effects of tensile elastic pre-deformation at different strain rates on the high-cycle fatigue behavior of SAE 1050 steel and fatigue life prediction

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of characterization tests were performed to elucidate the high-cycle fatigue (HCF) behavior in SAE 1050 steel subjected to tensile elastic pre-deformation at different strain rates. In the pre-strained stage, the deformation was maintained constant at 0.16%, which was close to the low yield point at strain rates ranging from 10−5 s−1 to 10−2 s−1. Although pre-deformation occurred entirely in the elastic regime, using different pre-straining rates resulted in the occurrence of heterogeneous microscopic strain at different sites and locations during subsequent fatigue tests. It was found that the effect of pre-straining rate on crack initiation and crack propagation was not monotonous and was influenced by the homogeneity of deformation within grain boundaries, the integrity of the boundary structure, and the fracture toughness. In addition, the rough set theory model was introduced for the attribute reduction of characteristic parameters and provided a scientific basis to establish the fatigue model. The model was able to effectively predict the lifetime of the process of HCF in pre-strained steel. Hence, the pre-straining rate should be an important boundary condition in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A.S. Hamada, L.P. Karjalainen, and J. Puustinen: Fatigue behavior of high-Mn TWIP steels. Mater. Sci. Eng., A 517, 68 (2009).

    Article  CAS  Google Scholar 

  2. M. Schilke, J. Ahlström, and B. Karlsson: Low cycle fatigue and deformation behaviour of austenitic manganese steel in rolled and in as-cast conditions. Procedia Eng. 2, 623 (2010).

    Article  CAS  Google Scholar 

  3. R. Pérez-Mora, T. Palin-Luc, C. Bathias, and P.C. Paris: Very high cycle fatigue of a high strength steel under sea water corrosion: A strong corrosion and mechanical damage coupling. Int. J. Fatigue 74, 156 (2015).

    Article  CAS  Google Scholar 

  4. T. Makita and E. Brhwiler: Damage models for UHPFRC and R-UHPFRC tensile fatigue behavior. Eng. Struct. 90, 61 (2015).

    Article  Google Scholar 

  5. C. Gaier, B. Unger, and H. Dannbauer: Multiaxial fatigue analysis of orthotropic materials. Rev. Metall. 107, 369 (2010).

    Article  Google Scholar 

  6. O. Umezawa and K. Nagai: Subsurface crack generation in high-cycle fatigue for high strength alloys. ISIJ Int. 37, 1170 (1997).

    Article  CAS  Google Scholar 

  7. T. Šmida and J. Bošanský: Deformation twinning and its possible influence on the ductile brittle transition temperature of ferritic steels. Mater. Sci. Eng., A 287, 107 (2000).

    Article  Google Scholar 

  8. C. Zener: Fracturing of Metals (ASM, Metals Park, OH, 1948); p. 3.

    Google Scholar 

  9. W.D. Biggs and P.L. Pratt: The deformation and fracture of alpha-iron at low temperatures. Acta Metall. 6, 694 (1958).

    Article  CAS  Google Scholar 

  10. D. Hull: Twinning and fracture of single crystals of 3% silicon iron. Acta Metall. 8, 11 (1960).

    Article  CAS  Google Scholar 

  11. D. Hull: Effect of grain size and temperature on slip, twinning and fracture in 3% silicon iron. Acta Metall. 9, 191 (1961).

    Article  CAS  Google Scholar 

  12. K. Ogawa: Edge dislocations dissociated in {112} planes and twinning mechanism of b.c.c. metals. Philos. Mag. 11, 217 (1965).

    Article  CAS  Google Scholar 

  13. J.R. Griffiths and D.R.J. Owen: An elastic-plastic stress analysis for a notched bar in plane strain bending. J. Mech. Phys. Solids 19, 419 (1971).

    Article  Google Scholar 

  14. G.T. Hahn: On influence of microstructure on brittle fracture toughness. Metall. Trans. A 15A, 947 (1984).

    Article  CAS  Google Scholar 

  15. J.H. Chen, G.Z. Wang, and H. Ma: Fracture behavior of C-Mn steel and weld metal in notched and precracked specimens: Part II. Micromechanism of fracture. Metall. Trans. A 21A, 321 (1990).

    Article  CAS  Google Scholar 

  16. W. Moćko: Application of austenitic steels in energy absorbing structures. J. KONES 19, 305 (2012).

    Google Scholar 

  17. W. Moćko and Z.L. Kowalewski: Application of FEM in assessments of phenomena associated with dynamic investigations on miniaturised DICT. Kovove Mater. 51, 71 (2013).

    Google Scholar 

  18. W. Moćko and Z.L. Kowalewski: Dynamic Compression tests-current achievements and future development. Eng. Trans. 59, 235 (2011).

    Google Scholar 

  19. W. Moćko, J.A. Rodriguez-Martinez, Z.L. Kowalewski, and A. Rusinek: Compressive viscoplastic response of 6082-T6 and 7075-T6 aluminium alloys under wide range of strain rate at room temperature: Experiments and modelling. Strain 48, 498 (2012).

    Article  CAS  Google Scholar 

  20. K.S. Al-Rubaie, M.A. Del-Grande, D.N. Travessa, and K.R. Cardoso: Effect of pre-strain on the fatigue life of 7050-T7451 aluminium alloy. Mater. Sci. Eng., A 464, 141 (2007).

    Article  CAS  Google Scholar 

  21. D.B. Lanning, T. Nicholas, and G. Haritos: Effect of plastic prestrain on high cycle fatigue of Ti-6Al-4V. Mech. Mater. 34, 127 (2002).

    Article  Google Scholar 

  22. T. Uemura: A fatigue life estimation of specimens excessively prestrained in tension. Fatigue Fract. Eng. Mater. Struct. 21, 151 (1998).

    Article  CAS  Google Scholar 

  23. A. Gustavwn and A. Melander: Fatigue of a highly prestrained dualphase sheet steel. Fatigue Fract. Eng. Mater. Struct. 18, 201 (1995).

    Article  Google Scholar 

  24. G.S. Wang: Effect of local plastic stretch on total fatigue life evaluation. In Proceedings of the 15th European Conference of Fracture (Ecf15 Stockholm, Stockholm, 2004).

    Google Scholar 

  25. P. Arora and M. Raghavan: Effect of tensile prestrain on fatigue strength of aluminium alloy in high cycle fatigue. J. Eng. Mater. Technol. 95, 76 (1973).

    Article  CAS  Google Scholar 

  26. C. Froustey and J.L. Lataillade: Influence of large pre-straining of aluminium alloys on their residual fatigue resistance. Int. J. Fatigue 30, 908 (2008).

    Article  CAS  Google Scholar 

  27. M. Ghammouri, M. Abbadi, and J. Mendez: The effect of cyclic prestraining on the fatigue life and the microstructural evolution of fatigued copper polycrystals. Int. J. Fatigue 56, 130 (2013).

    Article  CAS  Google Scholar 

  28. H. Biermann, G. Beyer, and H. Mughrabi: Low-cycle fatigue of a metal-matrix composite: Influence of pre-straining on the fatigue life. Mater. Sci. Eng., A 234–236, 198 (1997).

    Article  Google Scholar 

  29. X.H. An, S.D. Wu, Z.G. Wang, and Z.F. Zhang: Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys. Acta Mater. 74, 200 (2014).

    Article  CAS  Google Scholar 

  30. X.H. An, Q.Y. Lin, S.D. Wu, and Z.F. Zhang: Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys. Mater. Res. Lett. 3, 135 (2015).

    Article  CAS  Google Scholar 

  31. D. Gelmedin and K. Lang: Fatigue behaviour of the superalloy IN 713C under LCF-, HCF- and superimposed LCF/HCF-loading. Procedia Eng. 2, 1343 (2010).

    Article  Google Scholar 

  32. H. Wu, S. Hamada, and H. Noguchi: Pre-strain effect on fatigue strength characteristics of SUH660 plain specimens. Int. J. Fatigue 55, 291 (2013).

    Article  CAS  Google Scholar 

  33. B. Wang, Z.J. Zhang, C.W. Shao, Q.Q. Duan, J.C. Pang, H.J. Yang, X.W. Li, and Z.F. Zhang: Improving the high-cycle fatigue lives of Fe–30Mn–0.9C twinning-induced plasticity steel through pre-straining. Metall. Mater. Trans. A 46, 3317 (2015).

    Article  CAS  Google Scholar 

  34. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11, 341 (1982).

    Article  Google Scholar 

  35. N. Tsuchida, H. Masuda, Y. Harada, K. Fukaura, Y. Tomota, and K. Nagai: Effect of ferrite grain size on tensile deformation of a ferrite–cementite low carbon steel. Mater. Sci. Eng., A 488, 446 (2008).

    Article  CAS  Google Scholar 

  36. W.S. Lee and C.Y. Liu: The effect of temperature and strain rate on the dynamic flow behaviour of different steels. Mater. Sci. Eng., A 426, 101 (2006).

    Article  CAS  Google Scholar 

  37. M. Itabashi and K. Kawata: Carbon content on high-strain-rate tensile properties for carbon steels. Int. J. Impact Eng. 24, 117 (2000).

    Article  Google Scholar 

  38. J. Polak: Models of fatigue crack initiation. Kovové Materiály 36, 171 (1998).

    CAS  Google Scholar 

  39. V.S. Srinivasan, R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, and K.S. Raghavan: Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel. Int. J. Fatigue 13, 471 (1991).

    Article  CAS  Google Scholar 

  40. J.P. Bendstra, D.A. Koss, A. Geltmacher, P. Matic, and R.K. Everett: Modeling void coalescence during ductile fracture of a steel. Mater. Sci. Eng., A 366, 269 (2004).

    Article  CAS  Google Scholar 

  41. R.H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda: Microstructural aspects of fracture by dimpled rupture. Int. Mater. Rev. 30, 157 (1985).

    Article  Google Scholar 

  42. Y.R. Luo, C.X. Huang, R.H. Tian, and Q.Y. Wang: Effects of strain rate on low cycle fatigue behaviors of high-strength structural steel. J. Iron Steel Res. Int. 20, 50 (2013).

    Article  CAS  Google Scholar 

  43. P. Zhang, Q. Zhu, C. Hu, C.J. Wang, G. Chen, and H.Y. Qin: Cyclic deformation behavior of a nickel-base superalloy under fatigue loading. Mater. Des. 69, 12 (2015).

    Article  CAS  Google Scholar 

  44. D.Y. Ye, Y.D. Xu, L. Xiao, and H.B. Cha: Effects of low-cycle fatigue on static mechanical properties, microstructures and fracture behavior of 304 stainless steel. Mater. Sci. Eng., A 527, 4092 (2010).

    Article  CAS  Google Scholar 

  45. B.I. Sandor: Fundamentals of Cyclic Stress and Strain (The University of Wisconsin Press, Ltd, Madison, 1972).

    Google Scholar 

  46. S. Cheng, Y. Zhao, Y. Wang, Y. Li, X.L. Wang, P.K. Liaw, and E.J. Lavernia: Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys. Rev. Lett. 104, 255501 (2010).

    Article  CAS  Google Scholar 

  47. Q. Guo, Y.S. Chun, J.H. Lee, Y.U. Heo, and C.S. Lee: Enhanced low-cycle fatigue life by pre-straining in an Fe–17Mn–0.8C twinning induced plasticity steel. Met. Mater. Int. 20, 1043 (2014).

    Article  CAS  Google Scholar 

  48. R. Liu, Z.J. Zhang, P. Zhang, and Z.F. Zhang: Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction. Acta Mater. 83, 341 (2015).

    Article  CAS  Google Scholar 

  49. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497 (2001).

    Article  CAS  Google Scholar 

  50. G.J. Tucker and D.L. McDowell: Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations. Int. J. Plast. 27, 841 (2011).

    Article  CAS  Google Scholar 

  51. X.H. An, Q.Y. Lin, S.D. Wu, and Z.F. Zhang: Mechanically driven annealing twinning induced by cyclic deformation in nanocrystalline Cu. Scr. Mater. 68, 988 (2013).

    Article  CAS  Google Scholar 

  52. Y. Lage, H. Cachão, L. Reis, M. Fonte, M. De Freitas, and A. Ribeiro: A damage parameter for HCF and VHCF based on hysteretic damping. Int. J. Fatigue 62, 2 (2014).

    Article  CAS  Google Scholar 

  53. S.A. Firstov, N.I. Danilenko, V.I. Kopylov, and Y.N. Podrezov: Structural changes in iron upon large plastic deformations and their influence on the complex of its mechanical properties. Russ. Phys. J. 45, 251 (2002).

    Article  CAS  Google Scholar 

  54. M. Danylenko, Yu. Podrezov, and S. Firstov: Effect of dislocation structure on fracture toughness of strained BCC-metals. Theor. Appl. Fract. Mech. 32, 9 (1999).

    Article  CAS  Google Scholar 

  55. Y. Li, V. Aubin, C. Rey, and P. Bompard: Microstructural modeling of fatigue crack initiation in austenitic steel 304L. Procedia Eng. 31, 541 (2012).

    Article  CAS  Google Scholar 

  56. J. Degrieck and W.V. Paepegem: Fatigue damage modelling of fiber-reinforced composite materials: Review. Appl. Mech. Rev. 54, 279 (2001).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Joint Funds for basic research of High Speed Railway of the National Natural Science Foundation of China (No. U1334204) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangze Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Dai, G., Zhao, J. et al. Effects of tensile elastic pre-deformation at different strain rates on the high-cycle fatigue behavior of SAE 1050 steel and fatigue life prediction. Journal of Materials Research 31, 2825–2837 (2016). https://doi.org/10.1557/jmr.2016.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.288

Navigation