Skip to main content
Log in

Microstructure characteristics and mechanical properties of a 2A66 Al-Li alloy processed by continuous repetitive upsetting and extrusion

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Continuous repetitive upsetting and extrusion (CRUE) processing was performed to investigate its effects on microstructures, mechanical properties and texture characteristics of a 2A66 Al-Li alloy. The results show that the average grain size is effectively refined from initial as-extruded ∼140 µm to ∼4 µm after 3 CRUE passes. The grain refinement is the combined effect of continuous dynamic recrystallization and discontinuous dynamic recrystallization. The texture intensity tends to be weaker and new cube texture is gradually developed with increasing CRUE passes. In addition, the fraction of high angle grain boundaries increases to 86.37% after 3 CRUE passes. Tensile test results reveal that the ductility is greatly enhanced with modest reduction in strength after CRUE processing. The variation in mechanical properties may be mainly due to the decrease of dislocation density and weakening of texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. R.K. Gupta, N. Nayan, G. Nagasireesha, and S.C. Sharma: Development and characterization of Al-Li alloy. Mater. Sci. Eng., A 420, 228 (2006).

    Article  Google Scholar 

  2. R.J. Rioja and J. Liu: The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 43, 3325 (2012).

    Article  CAS  Google Scholar 

  3. K.V. Jata, S. Panchanadeeswaran, and A.K. Vasudevan: Evolution of texture, microstructure and mechanical property anisotropy in an Al-Li-Cu alloy. Mater. Sci. Eng., A 257, 37 (1998).

    Article  Google Scholar 

  4. I.V. Alexandrov, A.A. Dubravina, A.R. Kilmametov, V.U. Kazykhanov, and R.Z. Valiev: Textures in nanostructured metals processed by severe plastic deformation. Met. Mater. Int. 9, 151 (2003).

    Article  CAS  Google Scholar 

  5. L. Zaharia, R. Comaneci, R. Chelariu, and D. Luca: A new severe plastic deformation method by repetitive extrusion and upsetting. Mater. Sci. Eng., A 595, 135 (2014).

    Article  CAS  Google Scholar 

  6. Y. Xu, L. Hu, Y. Sun, and Q. Ma: Repetitive upsetting extrusion process and microstructure evolution of AZ61 magnesium. Mater. Res. Innovations 18, 173 (2014).

    Google Scholar 

  7. L.X. Hu, Y.P. Li, E. Wang, and Y. Yu: Ultrafine grained structure and mechanical properties of a LY12 Al alloy prepared by repetitive upsetting-extrusion. Mater. Sci. Eng., A 422, 327 (2006).

    Article  Google Scholar 

  8. I. Balasundar and T. Raghu: Deformation behaviour of bulk materials during repetitive upsetting-extrusion (RUE). Int. J. Mater. Form. 3, 267 (2010).

    Article  Google Scholar 

  9. I. Balasundar and T. Raghu: On the die design for repetitive upsetting-extrusion (RUE) process. Int. J. Mater. Form. 6, 289 (2013).

    Article  Google Scholar 

  10. I. Balasundar, K.R. Ravi, and T. Raghu: Grain refinement in OFHC Cu subjected to repetitive upsetting extrusion (RUE) process. Mater. Sci. Forum 710, 270 (2012).

    Article  CAS  Google Scholar 

  11. N. Akhtar: Melting and casting of lithium containing aluminum alloys. Int. J. Cast Metal. Res. 28, 1 (2015).

    Article  CAS  Google Scholar 

  12. M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven: High ductility bulk nanostructured Al-Mg binary alloy processed by equal channel angular pressing and inter-pass annealing. Scr. Mater. 105, 22 (2015).

    Article  CAS  Google Scholar 

  13. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130 (2014).

    Article  CAS  Google Scholar 

  14. W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee: Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Mater. 51, 3293 (2003).

    Article  CAS  Google Scholar 

  15. T. Mungole, N. Naresh, K. Dawara, P. Kumar, M. Kawasaki, and T.G. Langdon: Evolution of microhardness and microstructure in a cast Al-7% Si alloy during high-pressure. J. Mater. Sci. 48, 4671 (2013).

    Article  CAS  Google Scholar 

  16. A. Oscarsson, H.E. Ekstrom, and B. Hutchinson: Transition from discontinuous to continuous recrystallization in strip-cast aluminum. Mater. Sci. Forum 113–115, 177 (1993).

    Article  Google Scholar 

  17. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi: Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng., A 396, 341 (2005).

    Article  Google Scholar 

  18. W. Woo, H. Choo, and D.W. Brown: Texture analysis of a friction stir processed 6061-T6 aluminum alloy using neutron. Acta Mater. 54, 3871 (2006).

    Article  CAS  Google Scholar 

  19. H.R. Wenk and P. Van Houtte: Texture and anisotropy. Rep. Prog. Phys. 67, 1367 (2004).

    Article  CAS  Google Scholar 

  20. N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas: Microstructure and crystallographic texture evolution during the friction-stir processing of a precipitation-hardenable aluminum alloy. JOM 67, 1014 (2015).

    Article  CAS  Google Scholar 

  21. H.M. Jeong, K. Okayasu, and H. Fukutomi: {001} texture map of AA5182 aluminum alloy for high temperature uniaxial compression. Mater. Trans. 51, 2162 (2010).

    Article  CAS  Google Scholar 

  22. S. de La Chapelle: Cube recrystallization textures in a hot deformed Al-Mg-Si alloy. Scr. Metall. 45, 1387 (2001).

    Article  Google Scholar 

  23. H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino: Elongation increase in ultra-fine grained Al-Fe-Si alloy sheets. Acta Mater. 53, 1737 (2005).

    Article  CAS  Google Scholar 

  24. Z.P. Xing, S.B. Kang, and H.W. Kim: Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process. Metall. Mater. Trans. A 33, 1521 (2002).

    Article  Google Scholar 

  25. X.X. Kong, H. Zhang, and X.K. Ji: Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process. Mater. Sci. Eng., A 612, 131 (2014).

    Article  CAS  Google Scholar 

  26. E.L. Huskins, B. Cao, and K.T. Ramesh: Strengthening mechanisms in an Al-Mg alloy. Mater. Sci. Eng., A 527, 1292 (2010).

    Article  Google Scholar 

  27. M.J. Starink and S.C. Wang: A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta Mater. 51, 5131 (2003).

    Article  CAS  Google Scholar 

  28. T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon: The contribution of grain boundary sliding in tensile deformation of an ultrafine-grained aluminum alloy having high strength and high ductility. J. Mater. Sci. 50, 3549 (2015).

    Article  CAS  Google Scholar 

  29. I. Balasundar, K.R. Ravi, and T. Raghu: Strain softening in oxygen free high conductivity (OFHC) copper subjected to repetitive upsetting-extrusion (RUE) process. Mater. Sci. Eng., A 583, 114 (2013).

    Article  CAS  Google Scholar 

  30. O. Sitdikov, T. Sakai, and E. Avtokratov: Grain refinement in a commercial Al-Mg-Sc alloy under hot ECAP conditions. Mater. Sci. Eng., A 444, 18 (2007).

    Article  Google Scholar 

  31. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, and Y. Watanabe: Microstructure behavior of Al-Mg-Sc alloy processed by ECAP at elevated temperature. Acta Mater. 56, 821 (2008).

    Article  CAS  Google Scholar 

  32. S.J. Hales and T.R. Mcnelley: Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy. Acta Metall. 36, 1229 (1988).

    Article  CAS  Google Scholar 

  33. S. Gourdet and F. Montheillet: A model of continuous dynamic recrystallization. Acta Mater. 51, 2685 (2003).

    Article  CAS  Google Scholar 

  34. O. Sukhopar, O. Sitdiko, G. Gottstein, and R. Kaibyshev: Grain refinement in a commercial Al-Mg-Sc-Zr alloy during hot ECAP. Mater. Sci. Forum 584–586, 722 (2008).

    Article  Google Scholar 

  35. S. Gourdet and F. Montheillet: An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater. Sci. Eng., A 283, 274 (2000).

    Article  Google Scholar 

  36. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater. Sci. Eng., A 497, 479 (2008).

    Article  Google Scholar 

  37. S. Sangal and K. Tangri: The effect of small plastic deformation and annealing on the properties of polycrystals: Part II. Theoretical model for the transformation of nonequilibrium grain boundaries. Metal. Trans. A 20, 479 (1989).

    Article  Google Scholar 

  38. F.R. Castro-Fernández and C.M. Sellars: Static recrystallization and recrystallization during hot deformation of Al-1Mg-1Mn alloy. Mater. Sci. Technol. 4, 621 (1988).

    Article  Google Scholar 

  39. W. Gao, A. Belyakov, H. Miura, and T. Sakai: Dynamic recrystallization of copper polycrystals with different purities. Mater. Sci. Eng., A 265, 233 (1999).

    Article  Google Scholar 

  40. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo: Grain size evolution during discontinuous dynamic recrystallization. Scr. Mater. 72–73, 1 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to National Natural Science Foundation of China (Nos. 51271076; 51474101; 51574118) for the financial support of this work. The authors are also grateful to Beijing Institute of Aeronautical Material for the materials support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Xu, J., Teng, J. et al. Microstructure characteristics and mechanical properties of a 2A66 Al-Li alloy processed by continuous repetitive upsetting and extrusion. Journal of Materials Research 31, 2506–2515 (2016). https://doi.org/10.1557/jmr.2016.235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.235

Navigation