Skip to main content
Log in

Microstructure and mechanical properties of Laves phase NbCr2-based composites toughened with Cr phase fabricated by spark plasma sintering

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laves phase NbCr2-based composites toughened with different volume fractions of Cr phase were fabricated by spark plasma sintering (SPS). The microstructural evolution and mechanical properties of these spark plasma sintered NbCr2/Cr composites were investigated. The mechanical properties evaluations indicate that the introducing of Cr phase consolidated by SPS has a beneficial effect on the mechanical properties of the NbCr2 Laves phase. When the content of Cr phase in the NbCr2 Laves phase increases to 30 wt%, the hardness measured by a Berkovich nanoindenter operated with the continuous stiffness measurements mode attains the maximum value of 13.44 GPa, which is increased by about 56% over the as-cast NbCr2 Laves phase. More importantly, the room-temperature fracture toughness of the NbCr2-30wt%Cr alloy is increased to 18.9 MPa·m1/2, which is 16 times higher than that of the as-cast NbCr2 Laves phase (1.2 MPa·m1/2). The microstructural analysis indicates that the residual of Cr phase and formation of Nb solid solution can provide remarkable toughening of the NbCr2 Laves phase by fine grain toughening, dual ductile phase toughening, and interface toughening mechanisms. A possible formation mechanism of Nb solid solution during SPS has been proposed by considering the composition distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C. Jiang: Site preference of early transition metal elements in C15 NbCr2. Acta Mater. 55, 1599 (2007).

    Article  CAS  Google Scholar 

  2. A.V. Kazantzis, M. Aindow, I.P. Jones, and G.K. Triantafyllidis, and J.Th.M. De Hosson: The mechanical properties and the deformation microstructures of the C15 Laves phase Cr2Nb at high temperatures. Acta Mater. 55, 1873 (2007).

    Article  CAS  Google Scholar 

  3. X.W. Nie, S.Q. Lu, K.L. Wang, T.C. Chen, and C.L. Niu: Fabrication and toughening of NbCr2 matrix composites alloyed with Ni obtained by powder metallurgy. Mater. Sci. Eng., A 502, 85 (2009).

    Article  Google Scholar 

  4. K.W. Li, S.M. Li, K. Gao, and D.Q. Gong: Synthesis and characterization of NbCr2 Laves phase produced by spark plasma sintering. J. Mater. Res. 31, 380 (2016).

    Article  CAS  Google Scholar 

  5. P. Shayesteh, S. Mirdamadi, and H. Razavi: Study the effect of mechanical alloying parameters on synthesis of Cr2Nb–Al2O3 nanocomposite. Mater. Res. Bull. 49, 50 (2014).

    Article  CAS  Google Scholar 

  6. M. Takeyama and C.T. Liu: Microstructure and mechanical properties of Laves-phase alloys based on Cr2Nb. Mater. Sci. Eng., A 132, 61 (1991).

    Article  Google Scholar 

  7. K.W. Li, S.M. Li, Y.L. Xue, and H.Z. Fu: Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb. Int. J. Refract. Met. Hard Mater. 36, 154 (2013).

    Article  CAS  Google Scholar 

  8. K.W. Li, S.M. Li, Y.L. Xue, and H.Z. Fu: Microstructure and mechanical properties of arc melted Cr–Cr2Nb hypoeutectic alloy. Mater. Sci. Technol. 29, 742 (2013).

    Article  Google Scholar 

  9. C.M. Cady, K.C. Chen, P.G. Kotula, M.E. Mauro, and D.J. Thoma: Microstructures and mechanical properties of two-phase alloys based on NbCr2. MRS Proc. 552 (1998). doi: https://doi.org/10.1557/PROC-552-KK7.4.1.

  10. N. Aoyama and S. Hanada: Microstructure and strength of NbCr2/Cr composites. Mater. Trans. 38, 155 (1997).

    Article  CAS  Google Scholar 

  11. F. Stein, C. He, and I. Wossack: The liquidus surface of the Cr–Al–Nb system and re-investigation of the Cr–Nb and Al–Cr phase diagrams. J. Alloys Compd. 598, 253 (2014).

    Article  CAS  Google Scholar 

  12. X.D. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    Article  CAS  Google Scholar 

  13. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  14. M. Sakai and R.C. Bradt: Fracture toughness testing of brittle materials. Int. Mater. Rev. 38, 53 (1992).

    Article  Google Scholar 

  15. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  16. D. Tabor: The Hardness of Metals (Oxford University Press, Oxford, 1951).

    Google Scholar 

  17. X. Xiao, S.Q. Lu, P. Hu, M.G. Huang, X.W. Nie, and M.W. Fu: The effect of hot pressing time on the microstructure and properties of Laves phase NbCr2 alloys. Mater. Sci. Eng., A 485, 80 (2008).

    Article  Google Scholar 

  18. X.F. Wang, K. Wang, Z.D. Li, X.F. Wang, D. Wang, and F.S. Han: Synthesis and mechanical properties of bulk Al76Ni8Ti8Zr4Y4 alloy fabricated by consolidation of mechanically alloyed amorphous powders. J. Alloys Compd. 632, 617 (2015).

    Article  CAS  Google Scholar 

  19. N. Van Steenberge, J. Sort, A. Concustell, J. Das, S. Scudino, S. Suriñach, J. Eckert, and M.D. Baró: Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr. Mater. 56, 605 (2007).

    Article  Google Scholar 

  20. J.I. Jang, B.G. Yoo, Y.J. Kim, J.H. Oh, I.C. Choi, and H. Bei: Indentation size effect in bulk metallic glass. Scr. Mater. 64, 753 (2011).

    Article  CAS  Google Scholar 

  21. F.C.A. Ormeci, J.M. Wills, S.P. Chen, R.C. Albers, D.J. Thoma, and T.E. Mitchell: Elastic constants of a Laves phase compound: C15 NbCr2. MRS Proc. 460, 460 (1996).

    Article  Google Scholar 

  22. F. Chu, Y. He, D.J. Thoma, and T.E. Mitchell: Elastic constants of the C15 laves phase compound NbCr2. Scr. Metall. Mater. 33, 1295 (1995).

    Article  CAS  Google Scholar 

  23. D.L. Davidson, K.S. Chan, and D.L. Anton: The effects on fracture toughness of ductile-phase composition and morphology in Nb–Cr–Ti and Nb–Si in situ composites. Metall. Mater. Trans. A 27, 3007 (1996).

    Article  Google Scholar 

  24. S. Lee, P.K. Liaw, C.T. Liu, and Y.T. Chou: Cracking in Cr–Cr2Nb eutectic alloys due to thermal stresses. Mater. Sci. Eng., A 268, 184 (1999).

    Article  Google Scholar 

  25. X.L. Song, X.M. Liu, and J.X. Zhang: Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J. Am. Ceram. Soc. 89, 494 (2006).

    Article  CAS  Google Scholar 

  26. Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos: formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research was financially supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201507), the Youth Foundation of Taiyuan University of Technology (2014TD010) and the Qualified Personnel Foundation of Taiyuan University of Technology (tyut-rc201421a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Hao, R., Di, C. et al. Microstructure and mechanical properties of Laves phase NbCr2-based composites toughened with Cr phase fabricated by spark plasma sintering. Journal of Materials Research 31, 2214–2222 (2016). https://doi.org/10.1557/jmr.2016.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.231

Navigation