Skip to main content
Log in

Pb2+-stabilized Ruddlesden–Popper (Sr1− xPbx)3Ti2O7 ceramics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Pb2+-doped (Sr1− xPbx)3Ti2O7 (SPT) ceramics were fabricated by a solid state reaction. The stability and lattice structure of Sr3Ti2O7 and Sr4Ti3O10 Ruddlesden–Popper (RP) phases were studied as a function of Pb2+ content and sintering atmosphere. X-ray diffraction indicates that SrO(SrTiO3)n RP phase formation is sensitive to the Sr:Ti ratio of the raw materials and is a complex circularly iterative process. When the PbO concentration is less than x = 0.03, pure Sr3Ti2O7 can be obtained. Sr4Ti3O10 was found to be the main phase in the SPT samples for x ≥ 0.075. Pb2+ stabilizes SrO(SrTiO3)n RP phases by substitution for Sr2+ which reduces the lattice stress of the RP phase. It was observed that SrO vaporization losses at high temperature can be compensated by the decomposition of the intermediate SrPbO3 phase at lower temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. R.J. Mehta and G. Ramanath: High efficiency nanobulk thermoelectrics by bottom-up nanocrystal sculpting and assembly. Am. Ceram. Soc. Bull. 91 (3), 28 (2012).

    CAS  Google Scholar 

  2. S. Misture and D. Edwards: High temperature oxide thermoelectrics. Am. Ceram. Soc. Bull. 91 (3), 24 (2012).

    CAS  Google Scholar 

  3. A. Shakouri: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399 (2011).

    Article  CAS  Google Scholar 

  4. S.R.S. Kumar, M.N. Hedhili, D. Cha, T.M. Tritt, and H.N. Alshareef: Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers. Chem. Mater. 26, 2726 (2014).

    Article  CAS  Google Scholar 

  5. A.I. Abutaha, S.R.S. Kumar, K. Li, A.M. Dehkordi, T.M. Tritt, and H.N. Alshareef: Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3. Chem. Mater. 27, 2165 (2015).

    Article  CAS  Google Scholar 

  6. K. Koumoto, Y.F. Wang, R. Zhang, A. Kosuga, and R. Funahashi: Oxide thermoelectric materials: A nanostructuring approach. Annu. Rev. Mater. Res. 40, 363 (2010).

    Article  CAS  Google Scholar 

  7. R.R. Sun, X.Y. Qin, L.L. Li, D. Li, J. Zhang, Y.S. Zhang, and C.J. Tang: The effects of elements doping on transport and thermoelectric properties of Sr3Ti2O7. J. Phys. Chem. Solids 75, 629 (2014).

    Article  CAS  Google Scholar 

  8. A. Chernatynskiy, R.W. Grimes, M.A. Zurbuchen, D.R. Clarke, and S.R. Phillpot: Crossover in thermal transport properties of natural, perovskite-structured superlattices. Appl. Phys. Lett. 95, 161906 (2009).

    Article  Google Scholar 

  9. M.A. McCoy, R.W. Grimes, and W.E. Lee: Phase stability and interfacial structures in the SrO–SrTiO3 system. Philos. Mag. A 75 (3), 833 (1997).

    Article  CAS  Google Scholar 

  10. Y.F. Liu, Y. Lu, M. Xu, and L.F. Zhoun: Formation mechanisms of platelet Sr3Ti2O7 crystals synthesized by the molten salt synthesis method. J. Am. Ceram. Soc. 90 (6), 1774 (2007).

    Article  CAS  Google Scholar 

  11. Y. Ishida, K.I. Kakimoto, H. Ogawa, and M. Aki: Transitional mechanism of particle Sr3Ti2O7 morphology in the molten salt synthesis. Ferroelectrics 381, 24 (2009).

    Article  CAS  Google Scholar 

  12. N.D. Orloff, W. Tian, C.J. Fennie, C.H. Lee, D. Gu, J. Mateu, X.X. Xi, K.M. Rabe, D.G. Schlom, I. Takeuchi, and J.C. Booth: Broadband dielectric spectroscopy of Ruddlesden–Popper Srn +1TinO3 n +1 (n = 1, 2, 3…) thin films. Appl. Phys. Lett. 94, 042908 (2009).

    Article  Google Scholar 

  13. M. Jungbauer, S. Hühn, R. Egoavil, H. Tan, J. Verbeeck, G.V. Tendeloo, and V. Moshnyaga: Atomic layer epitaxy of Ruddlesden–Popper SrO(SrTiO3)n films by means of metalorganic aerosol deposition. Appl. Phys. Lett. 105, 251603 (2014).

    Article  Google Scholar 

  14. G. Emanuel, A.L. Alexandr, R. Marianne, J. Muller, P. Paufler, and D.C. Meyer: Oriented growth of Srn +1TinO3 n +1 Ruddlesden–Popper phases in chemical solution deposited thin films. J. Solid State Chem. 179, 1864 (2006).

    Article  Google Scholar 

  15. Y.F. Wang, K.H. Lee, H. Ohta, and K. Koumoto: Thermoelectric properties of electron doped SrO(SrTiO3)n (n = 1, 2). Ceramics. J. Appl. Phys. 105, 103701 (2009).

    Article  Google Scholar 

  16. K.H. Lee, Y.F. Wang, S.W. Kim, H. Ohta, and K. Koumoto: Thermoelectric properties of Ruddlesden–Popper phase n-type semiconducting oxides: La-, Nd-, and Nb-doped Sr3Ti2O7. Int. J. Appl. Ceram. Technol. 4 (4), 326 (2007).

    Article  CAS  Google Scholar 

  17. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  18. S. Gorsse, P. Bellanger, Y. Brechet, E. Sellier, A. Umarji, U. Ail, and R. Decourt: Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater. 59, 7425 (2011).

    Article  CAS  Google Scholar 

  19. C.H. Nien and H.Y. Lu: Crystallographic orientation relationships between SrTiO3 and Ruddlesden–Popper phases. J. Am. Ceram. Soc. 95 (5), 1676 (2012).

    Article  CAS  Google Scholar 

  20. A.H. Reshak: Thermoelectric properties of Srn +1TinO3 n +1 (n = 1, 2, 3, ∞) Ruddlesdene–Popper homologous series. Renewable Energy 76, 36 (2015).

    Article  CAS  Google Scholar 

  21. B.V. Beznosikov and K.S. Aleksandrov: Perovskite-like crystals of the Ruddlesden–Popper series. Crystallogr. Rep. 45 (5), 792 (2000).

    Article  Google Scholar 

  22. K.T. Jacob and K.P. Jayadevan: System Sr–Pb–O: Phase equilibria and thermodynamics using solid-state cells with buffer electrodes. Chem. Mater. 12, 1779 (2000).

    Article  CAS  Google Scholar 

  23. R. Klein, L.P. Cook, and W. Wong-Ng: Enthalpies of formation of SrPbO3 and Sr2PbO4. J. Chem. Thermodyn. 34, 2083 (2002).

    Article  CAS  Google Scholar 

  24. S.N. Ruddlesden and P. Popper: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54 (1958).

    Article  CAS  Google Scholar 

  25. C. Noguera: Theoretical investigation of the Ruddlesden–Popper compounds Srn +1TinO3 n +1 (n = 1–3). Philos. Mag. Lett. 80 (3), 173 (2000).

    Article  CAS  Google Scholar 

  26. S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, J. Petzelt, I.M. Reaney, and P.L. Wise: Composition dependence of the lattice vibrations in Srn +1TinO3 n +1 Ruddlesden–Popper homologous series. J. Eur. Ceram. Soc. 23, 2639 (2003).

    Article  CAS  Google Scholar 

  27. K.T. Jacob and G. Rajitha: Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. J. Chem. Thermodyn. 43, 51 (2011).

    Article  CAS  Google Scholar 

  28. G.J. Mccarthy, W.B. White, and R. Roy: Phase equilibria in the 1375°C isotherm of the system Sr–Ti–O. J. Am. Ceram. Soc. 52 (9), 463 (1969).

    Article  CAS  Google Scholar 

  29. D.R. Lide: CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, Boca Raton, FL, 2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to thank Nichole Wonderling from the Materials Characterization Lab in the Materials Research Institute at Penn State for Rietveld refinement discussions. Dr. F. Gao was supported by the Foundation of China Scholarship Council during his stay at The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Messing.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

A previous error in this article has been corrected, see https://doi.org/10.1557/jmr.2016.202.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Chang, Y., Poterala, S.F. et al. Pb2+-stabilized Ruddlesden–Popper (Sr1− xPbx)3Ti2O7 ceramics. Journal of Materials Research 31, 1456–1465 (2016). https://doi.org/10.1557/jmr.2016.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.164

Navigation