Skip to main content
Log in

Near atomic scale quantification of a diffusive phase transformation in (Zn,Mg)O/Al2O3 using dynamic atom probe tomography

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The onset of a diffusive phase transformation in thin film Zn0.70Mg0.29Ga0.01O deposited on c-oriented sapphire (α-Al2O3) was explored using dynamic heating experiments in a laser pulsed atom probe tomography (APT) instrument and correlated with transmission electron microscopy (TEM). Specimens were laser irradiated using 100–1000 pJ pulse energies with initial temperatures between 50 and 300 K for up to 8.64 × 1010 pulses. Using a finite element model, it was possible to estimate the temperatures reached by the specimen during laser pulsing, which were calculated to be 300 K to above 1000 K. Due to the small sample volume, quench rates were estimated to be 1013 K/s, allowing for nanosecond temporal resolution during the in situ heating experiments. The formation of Mg-spinel (MgAl2O4) at the transparent conductive oxide/α-Al2O3 substrate interface was observed using electron diffraction and confirmed by atom probe analysis. Subnanometer spatial resolution in the atom probe data reconstructions allowed for near atomic level diffusion to be observed. This work demonstrates the feasibility of conducting these experiments in situ using a combined TEM and APT instrument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. B. Gault, M.P. Moody, F. de Geuser, G. Tsafnat, A. La Fontaine, L.T. Stephenson, D. Haley, and S.P. Ringer: Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105, 034913 (2009).

    Article  Google Scholar 

  2. T.F. Kelly and M.K. Miller: Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 1 (2007).

    Article  Google Scholar 

  3. T.F. Kelly, A. Vella, J.H. Bunton, J. Houard, E.P. Silaeva, J. Bogdanowicz, and W. Vandervorst: Laser pulsing of field evaporation in atom probe tomography. Curr. Opin. Solid State Mater. Sci. 18, 81–89 (2014).

    Article  CAS  Google Scholar 

  4. D.R. Diercks, R. Kirchhofer, M. Brubaker, K. Bertness, N. Sanford, and B.P. Gorman: Anisotropic field evaporation of diatomic species from oxides and nitrides. In 53rd International Field Emission Symposium, International Field Emission Society, Tuscaloosa, AL, 2012.

    Google Scholar 

  5. A. Vella, J. Houard, F. Vurpillot, and B. Deconihout: Ultrafast emission of ions during laser ablation of metal for 3D atom probe. Appl. Surf. Sci. 255, 5154 (2009).

    Article  CAS  Google Scholar 

  6. D.R. Diercks, B.P. Gorman, R. Kirchhofer, N. Sanford, K. Bertness, and M. Brubaker: Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects. J. Appl. Phys. 114, 184903 (2013).

    Article  Google Scholar 

  7. F. Vurpillot, J. Houard, A. Vella, and B. Deconihout: Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D: Appl. Phys. 42, 1 (2009).

    Article  Google Scholar 

  8. A. Vella, B. Mazumder, G. Da Costa, and B. Deconihout: Field evaporation mechanism of bulk oxides under ultra fast laser illumination. J. Appl. Phys. 110, 1 (2011).

    Article  Google Scholar 

  9. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa: Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Appl. Phys. Lett. 75, 980 (1999).

    Article  CAS  Google Scholar 

  10. K. Maejima, H. Shibata, H. Tampo, K. Matsubara, and S. Niki: Characterization of Zn1−xMgxO transparent conducting thin films fabricated by multi-cathode RF-magnetron sputtering. Thin Solid Films 518, 2949–2952 (2010).

    Article  CAS  Google Scholar 

  11. Y. Ke, J. Berry, P. Parilla, A. Zakutayev, R. O’Hayre, and D. Ginley: The origin of electrical property deterioration with increasing Mg concentration in ZnMgO: Ga. Thin Solid Films 520, 3697 (2012).

    Article  CAS  Google Scholar 

  12. W.I. Park, G-C. Yi, and H.M. Jang: Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn[sub 1−x]Mg[sub x]O(0≤x≤0.49) thin films. Appl. Phys. Lett. 79, 2022 (2001).

    Article  CAS  Google Scholar 

  13. A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, and O.W. Holland: Optical and structural properties of epitaxial Mgx Zn1−x O alloys. Appl. Phys. Lett. 75, 3327 (1999).

    Article  CAS  Google Scholar 

  14. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, and T. Yasuda: Mgx Zn1-x O as a II–VI widegap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998).

    Article  CAS  Google Scholar 

  15. E.N. Bunting: Phase equilibria in the system SiO2-ZnO-Al2O3. J. Res. Natl. Inst. Stand. Technol. 8, 279 (1932).

    CAS  Google Scholar 

  16. T.I. Barry, A.T. Dinsdale, J.A. Gisby, B. Hallstedt, M. Hillert, S. Jonsson, B. Sundman, and J.R. Taylor: The compound energy model for ionic solutions with applications to solid oxides. J. Phase Equilib. 13, 459 (1992).

    Article  CAS  Google Scholar 

  17. S.K. Sampath, D. Kanhere, and R. Pandey: Electronic structure of spinel oxides: Zinc aluminate and zinc gallate. J. Phys.: Condens. Matter 11, 3635 (1999).

    CAS  Google Scholar 

  18. M. De Graef and M.E. McHenry: Structure of Materials an Introduction to Crystallography, Diffraction, and Symmetry, 1st ed. (Cambridge Univeristy Press, Cambridge, England, 2007); p. 276.

    Google Scholar 

  19. J.A. Ball, M. Pirzada, R.W. Grimes, M.O. Zacate, D.W. Price, and B.P. Uberuaga: Predicting lattice parameter as a function of cation disorder in MgAl2O4 spinel. J. Phys.: Condens. Matter 17, 7621 (2005).

    CAS  Google Scholar 

  20. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, and B.P. Gorman: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131 (2007).

    Article  CAS  Google Scholar 

  21. M.K. Miller and R.G. Forbes: Atom probe tomography. Mater. Charact. 60, 461 (2009).

    Article  CAS  Google Scholar 

  22. B.P. Gorman, D. Diercks, N. Salmon, E. Stach, G. Amador, and C. Hartfield: Hardware and techniques for cross- correlative TEM and atom probe analysis. Microsc. Today. 16, 42 (2008).

    Article  CAS  Google Scholar 

  23. M. Müller, G.D.W. Smith, B. Gault, C.R.M. Grovenor, and M. Mu: Compositional nonuniformities in pulsed laser atom probe tomography analysis of compound semiconductors. Appl. Phys. Lett. 111, 1 (2012).

    Google Scholar 

  24. M.P. Moody, F. Tang, B. Gault, S.P. Ringer, and J.M. Cairney: Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy 111, 493 (2011).

    Article  CAS  Google Scholar 

  25. R. Kirchhofer, M.C. Teague, and B.P. Gorman: Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J. Nucl. Mater. 436, 23 (2013).

    Article  CAS  Google Scholar 

  26. E.H. Khan, M.H. Weber, and M.D. McCluskey: Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: A combined study using positron annihilation, photoluminescence, and mass spectroscopy. Phys. Rev. Lett. 111, 017401 (2013).

    Article  Google Scholar 

  27. D.S. Wilkinson: Mass Transport in Solids and Fluids, 1st ed. (Cambridge Univeristy Press, Cambridge, England, 2000); p. 59.

    Book  Google Scholar 

  28. P. Zhang, T. Debroy, and S. Seetharaman: Interdiffusion in the MgO-Al203 spinel with or without some dopants. Metall. Mater. Trans. A. 27A, 2105–2114 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project is funded by the National Science Foundation through Grant No. DMR-1040456. Special thanks to Dr. Yi Ke for providing the material for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Gorman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchhofer, R., Diercks, D.R. & Gorman, B.P. Near atomic scale quantification of a diffusive phase transformation in (Zn,Mg)O/Al2O3 using dynamic atom probe tomography. Journal of Materials Research 30, 1137–1147 (2015). https://doi.org/10.1557/jmr.2015.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.86

Navigation