Skip to main content
Log in

A dual triangular pyramidal indentation technique for material property evaluation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, a method using dual triangular pyramidal indenters is suggested for material property evaluation. First, we demonstrate that the load–depth curves and the projected contact areas from conical and triangular pyramidal indentations are generally different. Nonequal projected contact areas of two indenters and nonplanar contact line of Berkovich indenter are the main sources of different indentation characteristics of two indenters. For this reason, an independent approach to the triangular pyramidal indentation is needed. With finite element (FE) indentation analyses for various materials, we investigate the relationships between material properties, indentation parameters, and load–depth curves. Based on the FE solutions, we suggest mapping functions for evaluating material properties from indentations by two triangular pyramidal WC indenters, which differ in their centerline-to-face angles. Elastic modulus, yield strength, and strain hardening exponent are obtained with an average error of <3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18

Similar content being viewed by others

References

  1. X. Chen, J. Yan, and A.M. Karlsson: On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng., A 416, 139–149 (2006).

    Article  Google Scholar 

  2. P.L. Larsson and P. Blanchard: On the correlation between residual stresses and global indentation quantities: Numerical results for general biaxial stress fields. Mater. Des. 37, 435–442 (2012).

    Article  Google Scholar 

  3. J.H. Lee, D. Lim, H.C. Hyun, and H. Lee: A numerical approach to indentation technique to evaluate material properties of film-on-substrate systems. Int. J. Solids Struct. 49, 1033–1043 (2012).

    Article  Google Scholar 

  4. F. Kick: Das Gesetz der proportionalen Widerstände und seine Anwendungen (in German) (Felix–Verlag, Leipzig, 1885).

    Google Scholar 

  5. X. Chen, N. Ogasawara, M. Zhao, and N. Chiba: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55, 1618–1660 (2007).

    Article  Google Scholar 

  6. J.H. Lee, H. Lee, and D.H. Kim: A numerical approach to elastic modulus evaluation using conical indenter with finite tip radius. J. Mater. Res. 23, 2528–2537 (2008).

    Article  CAS  Google Scholar 

  7. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918 (2001).

    Article  CAS  Google Scholar 

  8. N. Chollacoop, M. Dao, and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713–3729 (2003).

    Article  CAS  Google Scholar 

  9. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  10. Y.P. Cao and J. Lu: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023–4032 (2004).

    Article  CAS  Google Scholar 

  11. J.H. Lee, T. Kim, and H. Lee: A study on robust indentation techniques to evaluate elastic–plastic properties of metals. Int. J. Solids. Struct. 47, 647–664 (2010).

    Article  Google Scholar 

  12. M. Beghini, L. Bertini, and V. Fontanari: Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441–2459 (1994).

    Article  Google Scholar 

  13. K. Bobzin, N. Bagcivan, S. Theiß, R. Brugnara, and J. Perne: Approach to determine stress strain curves by FEM supported nanoindentation. Materialwiss. Werkstofftech. 44, 571–576 (2013).

    Article  Google Scholar 

  14. T.F. Juliano, M.R. VanLandingham, T. Weerasooriya, and P. Moy: Extracting stress–strain and compressive yield stress information from spherical indentation. Army Res. Lab., ARL-TR-4229, 1–16 (2007).

  15. J. Alkorta, J.M. Martinez-Esnaola, and J. Gil Sevillano: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data. J. Mater. Res. 20, 432–437 (2005).

    Article  CAS  Google Scholar 

  16. J. Luo, J. Lin, and T.A. Dean: A study on the determination of mechanical properties of a power-law material by its indentation force–depth curve. Philos. Mag. 86, 2881–2905 (2006).

    Article  CAS  Google Scholar 

  17. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91–149 (2004).

    Article  Google Scholar 

  18. S. Swaddiwudhipong, K.K. Tho, Z.S. Liu, and K. Zeng: Material characterization based on dual indenters. Int. J. Solids Struct. 42, 69–83 (2005).

    Article  Google Scholar 

  19. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663–1678 (2003).

    Article  CAS  Google Scholar 

  20. M. Le: Materials characterization by dual indenter. Int. J. Solids Struct. 46, 2988–2998 (2009).

    Article  Google Scholar 

  21. H.C. Hyun, M. Kim, J.H. Lee, and H. Lee: A dual conical indentation technique based on FEA solutions for property evaluation. Mech. Mater. 43, 313–331 (2011).

    Article  Google Scholar 

  22. S. Shim, W.C. Oliver, and G.M. Pharr: A comparison of 3d finite element simulation for Berkovich and conical indentation of fused silica. Int. J. Surf. Sci. Eng. 1, 259–273 (2007).

    Article  Google Scholar 

  23. L. Min, W.M. Chen, N.G. Liang, and L.D. Wang: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 19, 73–78 (2004).

    Article  CAS  Google Scholar 

  24. Abaqus, Abaqus User’s Manual, Version 6.12: (Dassault Systemes, Providence, RI, USA, 2012).

  25. J.R. Rice and G.F. Rosengren: Plane strain deformation near a crack-tip in a power law hardening material. J. Mech. Phys. Solids 16, 1–12 (1968).

    Article  Google Scholar 

  26. H. Lee, J.H. Lee, and G.M. Pharr: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037–2069 (2005).

    Article  CAS  Google Scholar 

  27. J. Qin, Y. Huang, K.C. Hwang, J. Song, and G.M. Pharr: The effect of indenter angle on the microindentation hardness. Acta Mater. 55, 6127–6132 (2007).

    Article  CAS  Google Scholar 

  28. J.L. Hay and B. Crawford: Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727–738 (2010).

    Article  Google Scholar 

  29. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  30. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657–1664 (1987).

    Article  Google Scholar 

  31. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296–2305 (1999).

    Article  CAS  Google Scholar 

  32. G.M. Pharr: Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng., A 253, 151–159 (1998).

    Article  Google Scholar 

  33. M. Kim, S. Bang, F. Rickhey, and H. Lee: Correction of indentation load–depth curve based on elastic deformation of sharp indenter. Mech. Mater. 69, 146–158 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. NRF-2012 R1A2A2A 01046480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungyil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Lee, J.H., Rickhey, F. et al. A dual triangular pyramidal indentation technique for material property evaluation. Journal of Materials Research 30, 1098–1109 (2015). https://doi.org/10.1557/jmr.2015.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.67

Navigation