Skip to main content

Advertisement

Log in

High-energy synchrotron x-ray techniques for studying irradiated materials

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this study, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. The changes in material state as Fe-based alloys are heated to high temperatures or subject to irradiation are examined using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. S.J. Zinkle and B.N. Singh: Microstructure of neutron-irradiated iron before and after tensile deformation. J. Nucl. Mater. 351(1–3), 269 (2006).

    Article  CAS  Google Scholar 

  2. B.N. Singh and J.H. Evans: Significant differences in defect accumulation behavior between FCC and BCC crystals under cascade damage conditions. J. Nucl. Mater. 226(3), 277 (1995).

    Article  CAS  Google Scholar 

  3. H. Trinkaus, B.N. Singh, and A.J.E. Foreman: Glide of interstitial loops produced under cascade damage conditions: Possible effects on void formation. J. Nucl. Mater. 199(1), 1 (1992).

    Article  CAS  Google Scholar 

  4. H. Wollenberger: Phase-transformations under irradiation. J. Nucl. Mater. 216, 63 (1994).

    Article  CAS  Google Scholar 

  5. S.J. Zinkle and J.T. Busby: Structural materials for fission & fusion energy. Mater. Today 12(11), 12 (2009).

    Article  CAS  Google Scholar 

  6. D.R. Haeffner, J.D. Almer, and U. Lienert: The use of high energy X-rays for the advanced photon source to study stresses in materials. Mater. Sci. Eng., A 399(1), 120–127 (2005).

    Article  CAS  Google Scholar 

  7. M.R. Daymond, M.L. Young, J.D. Almer, and D.C. Dunand: Strain and texture evolution during mechanical loading of a crack tip in martensitic shape-memory NiTi. Acta Mater. 55(11), 3929 (2007).

    Article  CAS  Google Scholar 

  8. A. King, G. Johnson, D. Engelberg, W. Ludwig, and J. Marrow: Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321(5887), 382 (2008).

    Article  CAS  Google Scholar 

  9. H.F. Poulsen: Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics. Springer Tracts in Modern Physics Vol. 205; Springer-Verlag: Germany.

  10. R. Suter, D. Hennessy, C. Xiao, and U. Lienert: Forward modelling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification. Rev. Sci. Instrum. 77, 123905, 2006.

    Article  CAS  Google Scholar 

  11. D.T. Hoelzer, K.A. Unocic, E.T. Manneschmidt, and M.A. Sokolov: Reference Characterization of the Advanced ODS 14YWT-SM12 Heat Used in HFIR JP30/31 Neutron Irradiation Experiment, Fusion Reactor Materials Program DOE/ER-0313-0352, Vol. 52, 2012.

  12. S.D. Shastri, J. Almer, C. Ribbing, and B. Cederstrom: High-energy X-ray optics with silicon saw-tooth refractive lenses. J. Synchrotron Radiat. 14, 204 (2007).

    Article  CAS  Google Scholar 

  13. National Institute of Standards and Technology: X-Ray Powder Diffraction Intensity Set (Quantitative Powder Diffraction Standard), USA, 2012. https://www-s.nist.gov/srmors/view_detail.cfm?srm=674B.

  14. F. Zhang, J. Ilavsky, G.G. Long, J.P.G. Quintana, A.J. Allen, and P.R. Jemian: Glassy carbon as an absolute intensity calibration standard for small-angle scattering. Metall. Mater. Trans. A 41A(5), 1151 (2010).

    Article  CAS  Google Scholar 

  15. L.Y. Wang, M.M. Li, and J. Almer: In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering. J. Nucl. Mater. 440(1–3), 81 (2013).

    Article  CAS  Google Scholar 

  16. J.T. Busby: Advanced materials for nuclear reactor systems: Alloys by design to overcome past limitations. In International Conference on Fast Reactors and Related Fuel Cycles (FR09): Challenges and Opportunities, Japan, 2009.

    Google Scholar 

  17. National Institute of Standards and Technology: Single Crystal Diffractometer Alignment Standard–Ruby Sphere, USA, 2001. https://www-s.nist.gov/srmors/view_detail.cfm?srm=1990.

  18. H. Sharma, R.M. Huizenga, and S.E. Offerman: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. I. Overlapping diffraction peaks and parameters of the experimental setup. J. Appl. Crystallogr. 45, 693 (2012).

    Article  CAS  Google Scholar 

  19. H. Sharma, R.M. Huizenga, and S.E. Offerman: A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. II. Volume, centre-of-mass position, crystallographic orientation and strain state of grains. J. Appl. Crystallogr. 45, 705 (2012).

    Article  CAS  Google Scholar 

  20. J. Ilavsky and P.R. Jemian: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009).

    Article  CAS  Google Scholar 

  21. S.E. Offerman and H. Sharma: Grain nucleation and growth of individual austenite and ferrite grains studied by 3DXRD microscopy at the ESRF. In In-situ Studies with Photons, Neutrons and Electrons Scattering, T. Kannengiesser, S.S. Babu, Y. Komizo, and A.J. Ramirez eds.; Springer-Verlag: Berlin, 2010; p. 41.

    Chapter  Google Scholar 

  22. U.F. Kocks, C.N. Tomé, H.-R. Wenk, and H. Mecking: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge University Press, UK, 2000).

    Google Scholar 

  23. C. Mieszczynski, G. Kuri, C. Degueldre, M. Martin, J. Bertsch, C.N. Borca, D. Grolimund, C. Delafoy, and E. Simoni: Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction. J. Nucl. Mater. 444(1–3), 274 (2014).

    Article  CAS  Google Scholar 

  24. E.D. Specht, F.J. Walker, and W.J. Liu: X-ray microdiffraction analysis of radiation-induced defects in single grains of polycrystalline Fe. J. Synchrotron Radiat. 17, 250 (2010).

    Article  CAS  Google Scholar 

  25. H. Peisl: Defect properties from x-ray scattering experiments. J. Phys. Colloques. 37(C7), 47–53 (1976).

    Article  Google Scholar 

  26. D. Grasse, B. Vonguerard, and J. Peisl: Interstitial clustering in cascades in fast-neutron irradiated aluminum by diffuse-x-ray scattering. J. Nucl. Mater. 108(1–2), 169 (1982).

    Article  Google Scholar 

  27. R.I. Barabash, G.E. Ice, and F.J. Walker: Quantitative microdiffraction from deformed crystals with unpaired dislocations and dislocation walls. J. Appl. Phys. 93(3), 1457 (2003).

    Article  CAS  Google Scholar 

  28. F. Hofmann, S. Keegan, and A.M. Korsunsky: Diffraction post-processing of 3D dislocation dynamics simulations for direct comparison with micro-beam Laue experiments. Mater. Lett. 89, 66 (2012).

    Article  CAS  Google Scholar 

  29. W.V. Vaidya and K. Ehrlich: Radiation-induced recrystallization, its cause and consequences in heavy-ion irradiated 20-percent cold-drawn steels of type 1.4970. J. Nucl. Mater. 113(2–3), 149 (1983).

    Article  CAS  Google Scholar 

  30. J. Rest: Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels. J. Nucl. Mater. 349(1–2), 150 (2006).

    Article  CAS  Google Scholar 

  31. A.R. Stokes and A.J.C. Wilson: The diffraction of X rays by distorted crystal aggregates–I. Proc. Phys. Soc. 56, 174 (1944).

    Article  CAS  Google Scholar 

  32. L. Hsiung, S. Tumey, M. Fluss, Y. Serruys, and F. Willaime: HRTEM study of the role of nanoparticles in ODS ferritic steel. Presented at the 2010 MRS Fall Meeting, USA, 2010.

  33. X. Pan, X. Wu, K. Mo, X. Chen, J. Almer, J. Ilavsky, D.R. Haeffner, and J.F. Stubbins: Lattice strain and damage evolution of 9–12%Cr ferritic/martensitic steel during in situ tensile test by X-ray diffraction and small angle scattering. J. Nucl. Mater. 407(1), 10 (2010).

    Article  CAS  Google Scholar 

  34. L. Wang, M. Li, and J. Almer: Investigation of deformation and microstructural evolution in Grade 91 ferritic-martensitic steel by in situ high-energy X-rays. Acta Mater. 62, 239 (2014).

    Article  CAS  Google Scholar 

  35. S.L. Wong and P.R. Dawson: Influence of directional strength-to-stiffness on the elastic–plastic transition of fcc polycrystals under uniaxial tensile loading. Acta Mater. 58(5), 1658–1678 (2010), ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2009.11.009.

    Article  CAS  Google Scholar 

  36. U.F. Kocks: The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1(5), 1121–1143 (1970).

    Article  Google Scholar 

  37. U.F. Kocks, G.R. Canova, and J.J. Jonas: Yield vectors in F.C.C. crystals. Acta Metall. 31(8), 1243–1252 (1983).

    Article  CAS  Google Scholar 

  38. H. Ritz, P. Dawson, and T. Marin: Analyzing the orientation dependence of stresses in polycrystals using vertices of the single crystal yield surface and crystallographic fibers of orientation space. J. Mech. Phys. Solids 58(1), 54–72 (2010), ISSN 0022-5096. https://doi.org/10.1016/j.jmps.2009.08.007.

    Article  Google Scholar 

  39. R.E. Stoller, F.J. Walker, E.D. Specht, D.M. Nicholson, R.I. Barabash, P. Zschack, and G.E. Ice: Diffuse X-ray scattering measurements of point defects and clusters in iron. J. Nucl. Mater. 367, 269 (2007).

    Article  CAS  Google Scholar 

  40. M.A. Krivoglaz: X-ray and Neutron Diffraction in Nonideal Crystals (Springer Verlag, Germany, 1996).

    Book  Google Scholar 

  41. J. Spino and D. Papaioannou: Lattice parameter changes associated with the rim-structure formation in high burn-up UO2 fuels by micro X-ray diffraction. J. Nucl. Mater. 281(2–3), 146 (2000).

    Article  CAS  Google Scholar 

  42. M. Song, Y.D. Wu, D. Chen, X.M. Wang, C. Sun, K.Y. Yu, Y. Chen, L. Shao, Y. Yang, K.T. Hartwig, and X. Zhang: Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. Acta Mater. 74, 285 (2014).

    Article  CAS  Google Scholar 

  43. K.G. Field, L.M. Barnard, C.M. Parish, J.T. Busby, D. Morgan, and T.R. Allen: Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 435(1–3), 172 (2013).

    Article  CAS  Google Scholar 

  44. A. Alsabbagh, R.Z. Valiev, and K.L. Murty: Influence of grain size on radiation effects in a low carbon steel. J. Nucl. Mater. 443(1–3), 302 (2013).

    Article  CAS  Google Scholar 

  45. W. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra: Design of radiation tolerant materials via interface engineering. Adv. Mater. 25(48), 6975 (2013).

    Article  CAS  Google Scholar 

  46. G.K. Williamson and W.H. Hall: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953), ISSN 0001-6160. https://doi.org/10.1016/0001-6160(53http://dx.doi.org/10.1016/0001-6160(53)90006-6.

    Article  CAS  Google Scholar 

  47. B.E. Warren and B.L. Averbach: The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 21, 595–599 (1950). DOI:https://doi.org/10.1063/1.1699713.

    Article  CAS  Google Scholar 

  48. T. Ungár and A. Borbély: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173 (1996). (doi: https://doi.org/10.1063/1.117951).

    Article  Google Scholar 

  49. S.L. Wong, J-S. Park, M.P. Miller, and P.R. Dawson: A framework for generating synthetic diffraction images from deforming polycrystals using crystal-based finite element formulations. Comput. Mater. Sci. 77, 456–466 (2013), ISSN 0927-0256. https://doi.org/10.1016/j.commatsci.2013.03.019.

    Article  CAS  Google Scholar 

  50. M. Obstalecki, S.L. Wong, P.R. Dawson, and M.P. Miller: Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation. Acta Mater. 75, 259–272 (2014), ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2014.04.059.

    Article  CAS  Google Scholar 

  51. N.R. Barton, A. Arsenlis, and J. Marian: A polycrystal plasticity model of strain localization in irradiated iron. J. Mech. Phys. Solids 61(2), 341–351 (2013), ISSN 0022-5096, https://doi.org/10.1016/j.jmps.2012.10.009.

    Article  CAS  Google Scholar 

  52. R.A. Lebensohn and C.N. Tomé: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41(9), 2611–2624 (1993), ISSN 0956-7151. http:/dx./doi.org/10.1016/0956-7151(93http://dx.doi.org/10.1016/0956-7151(93)90130-K.

    Article  CAS  Google Scholar 

  53. P. Dawson, M. Miller, T-S. Han, and J. Bernier: An accelerated methodology for the evaluation of critical properties in polyphase alloys. Metall. Mater. Trans. A 36(7), 1627–1641 (2005).

    Article  Google Scholar 

  54. C. Efstathiou, D.E. Boyce, J-S. Park, U. Lienert, P.R. Dawson, and M.P. Miller: A method for measuring single-crystal elastic moduli using high-energy X-ray diffraction and a crystal-based finite element model. Acta Mater. 58(17), 5806–5819 (2010), ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2010.06.056.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, for the Nuclear Energy Enabling Technology (NEET) Program under Contract No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Neutron-irradiated specimens were provided by the ATR National Scientific User Facility (NSUF) at the Idaho National Laboratory (INL). The authors would like to thank Collin Knight, Brandon Miller, and James Cole at the ATR NSUF, INL. The authors also would like to thank Loren A. Knoblich, Jakub P. Dobrzynski, Yiren Chen at the Irradiated Materials Laboratory, Brent A. Finney at Special Materials, John Vacca at Health Physics, Environment, Safety, and Quality Assurance, APS Radioactive Sample Safety Review Committee at ANL. Erika Benda and Ali Mashayekhi at the APS, ANL are thanked for designing and fabricating the specimen holders for the irradiated TEM specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Almer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JS., Zhang, X., Sharma, H. et al. High-energy synchrotron x-ray techniques for studying irradiated materials. Journal of Materials Research 30, 1380–1391 (2015). https://doi.org/10.1557/jmr.2015.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.50

Navigation