Skip to main content
Log in

The stabilities and electronic structures of AlnSi12-nN12 (n = 0, 1, 2, and 4)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

AlnSi12-nN12 (n = 0, 1, 2, and 4) are electron redundant systems. The calculations show that the stabilities of AlnSi12-nN12 and Al12N12 are very close. One Si atom in each Si2N2 square protrudes obviously and the cages are distorted. The excess electrons reside at the outside of the protrudent Si atoms as lone pair electrons. They occupy antibonding orbitals and form the highest occupied band. The Si–N bonds are covalent bonds with strong polarity. The overlap integral is 0.38 per Si-N bond and is 17% stronger than the overlap in Al12N12. The atoms in molecule charge on the in-plane and protrudent Si atoms are 3.13 e and 1.65 e, respectively. The lone pair electrons form large local dipole moments enhance the electrostatic interaction between the protrudent Si and N atoms. The energy gaps of the electron redundant cages AlnSi12-nN12 (n = 0, 1, 2, and 4) are about 1 eV smaller than the gap of Al12N12. As the lone pair electrons are loosely bond, the SiN-based cages have large hyper-polarizabilities and so have potential applications, such as nonlinear optical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. N.G. Chopra, R.J. Luyren, K. Cherry, V.H. Crespi, M.L. Cohen, S.G. Louis, and A. Zettl: Boron nitride nanotubes. Science 269, 966 (1995).

    Article  CAS  Google Scholar 

  2. Y. Feldman, E. Wasserman, D.J. Srolovit, and R. Tenne: High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).

    Article  CAS  Google Scholar 

  3. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi: A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18, 2653 (2012).

    Article  CAS  Google Scholar 

  4. D. Golberg, Y. Bando, O. Stéphan, and K. Kurashima: Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 73, 2441 (1998).

    Article  CAS  Google Scholar 

  5. D. Golberg, Y. Bando, K. Kurashima, and T. Sato: Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44, 1561 (2001).

    Article  CAS  Google Scholar 

  6. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard: Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett. 76, 4737 (1996).

    Article  CAS  Google Scholar 

  7. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan: Band parameters for III–V compound semiconductors and their alloys. Appl. Phys. Rev. 89, 5815 (2001).

    Article  CAS  Google Scholar 

  8. O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, and W.E. Buhro: CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808 (2000).

    Article  CAS  Google Scholar 

  9. D. Srivastava, M. Menon, and K. Cho: Anisotropic nanomechanics of boron nitride nanotubes: Nanostructured “skin” effect. Phys. Rev. B 63, 195413 (2001).

    Article  CAS  Google Scholar 

  10. Q. Wu, Z. Hu, X.Z. Wang, Y.N. Lu, X. Chen, H. Xu, and Y. Chen: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125, 10176 (2003).

    Article  CAS  Google Scholar 

  11. C. Liu, Z. Hu, Q. Wu, X.Z. Wang, Y. Chen, H. Sang, J.M. Zhu, S.Z. Deng, and N.S. Xu: Vapor–solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc. 127, 1318 (2005).

    Article  CAS  Google Scholar 

  12. M. Lei, H. Yang, P.G. Li, and W.H. Tang: Synthesis and characterization of straight and stacked-sheet AlN nanowires with high purity. J. Alloys Compd. 459, 338 (2008).

    Article  CAS  Google Scholar 

  13. W.W. Lei, D. Liu, J. Zhang, P.W. Zhu, Q.L. Cui, and G.T. Zou: Direct synthesis, growth mechanism, and optical properties of 3D AlN nanostructures with urchin shapes. Cryst. Growth Des. 9, 1489 (2009).

    Article  CAS  Google Scholar 

  14. Ch. Chang, A.B.C. Patzer, E. Sedlmayr, T. Steinke, and D. Sülzle: A density functional study of small (AlN)x clusters: Structures, energies and frequencies. Chem. Phys. 271, 283 (2001).

    Article  CAS  Google Scholar 

  15. H.S. Wu, F.Q. Zhang, X.H. Xu, C.J. Zhang, and H.J. Jiao: Geometric and energetic aspects of aluminum nitride cages. J. Phys. Chem. A 107, 204 (2003).

    Article  CAS  Google Scholar 

  16. D.J. Zhang and R.Q. Zhang: Geometrical structures and electronic properties of AlN fullerenes: A comparative theoretical study of AlN fullerenes with BN and C fullerenes. J. Mater. Chem. 15, 3034 (2005).

    Article  CAS  Google Scholar 

  17. J.L. Li, Y.Y. Xia, M.W. Zhao, X.D. Liu, C. Song, L.J. Li, F. Li, and B.D. Huang: Theoretical prediction for the (AlN)12 fullerene-like cage-based nanomaterials. J. Phys.: Condens. Matter 19, 346228 (2007).

    Google Scholar 

  18. M. Anafcheh, R. Ghafouri, and F. Naderi: Electronic and chemical characterization of aluminum–nitrogen (AlN) substituted fullerenes: C58AlN to C24Al12N12. J. Cluster Sci. 24, 327 (2013).

    Article  CAS  Google Scholar 

  19. A. Costales, M.A. Blanco, E. Francisco, A. Martín Pendás, and R. Pandey: First principles study of neutral and anionic (medium-size) aluminum nitride clusters: AlnNn, n = 7–16. J. Phys. Chem. B 110, 4092 (2006).

    Article  CAS  Google Scholar 

  20. X. Zhou, M.M. Wu, J. Zhou, and Q. Sun: Hydrogen storage in Al-N cage based nanostructures. Appl. Phys. Lett. 94, 103105 (2009).

    Article  CAS  Google Scholar 

  21. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe: Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3, 621 (2009).

    Article  CAS  Google Scholar 

  22. X. Chen, J. Ma, Z. Hu, Q. Wu, and Y. Chen: AlN nanotube: Round or faceted?J. Am. Chem. Soc. 127, 7982 (2005).

    Article  CAS  Google Scholar 

  23. J.M. Matxain, L.A. Eriksson, J.M. Mercero, X. Lopez, M. Piris, J.M. Ugalde, J. Poater, E. Matito, and M. Solà: New solids based on B12N12 fullerenes. J. Phys. Chem. C 111, 13354 (2007).

    Article  CAS  Google Scholar 

  24. J.L. Li, T. He, and G.W. Yang: An all-purpose building block: B12N12 fullerene. Nanoscale 4, 1665 (2012).

    Article  CAS  Google Scholar 

  25. Z.F. Liu, X.Q. Wang, G.B. Liu, P. Zhou, J. Sui, X.F. Wang, H.J. Zhu, and Z.L. Hou: Low-density nanoporous phases of group-III nitrides built from sodalite cage clusters. Phys. Chem. Chem. Phys. 15, 8186 (2013).

    Article  CAS  Google Scholar 

  26. Y. Zhang, H. Gu, K. Suenaga, and S. Iijima: Heterogeneous growth of B-C-N nanotubes by laser ablation. Chem. Phys. Lett. 279, 264 (1997).

    Article  CAS  Google Scholar 

  27. J. Yu, X.D. Bai, J. Ahn, S.F. Yoon, and E.G. Wang: Highly oriented rich boron B–C–N nanotubes by bias-assisted hot filament chemical vapor deposition. Chem. Phys. Lett. 323, 529 (2000).

    Article  CAS  Google Scholar 

  28. X. Wei, M.S. Wang, Y. Bando, and D. Golberg: Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5, 2916 (2011).

    Article  CAS  Google Scholar 

  29. X.G. Luo, X.J. Guo, Z.Y. Liu, J.L. He, D.L. Yu, B. Xu, and Y.J. Tian: First-principles study of wurtzite BC2N. Phys. Rev. B 76, 092107 (2007).

    Article  CAS  Google Scholar 

  30. T. Kar, M. Čuma, and S. Scheiner: Structure, stability, and bonding of BC2N: an ab initio study. J. Phys. Chem. A 102, 10134 (1998).

    Article  CAS  Google Scholar 

  31. X.F. Fan, Z.X. Zhu, Z.X. Shen, and J.L. Kuo: On the use of bond-counting rules in predicting the stability of C12B6N6 fullerene. J. Phys. Chem. C 112, 15691 (2008).

    Article  CAS  Google Scholar 

  32. Z.F. Chen, K.Q. Ma, H.X. Zhao, Y.M. Pan, X.Z. Zhao, A. Tang, and J.K. Feng: Semi-empirical calculations on the BN substituted fullerenes C60−2x(BN)x (x = 1–3)—Isoelectronic equivalents of C60. J. Mol. Struct.: THEOCHEM 466, 127 (1999).

    Article  CAS  Google Scholar 

  33. J. Pattanayak, T. Kar, and S. Scheiner: Boron–nitrogen (BN) substitution patterns in C/BN hybrid fullerenes: C60−2x(BN)x (x = 1–7). J. Phys. Chem. A 105, 8376 (2001).

    Article  CAS  Google Scholar 

  34. J. Pattanayak, T. Kar, and S. Scheiner: Boron–nitrogen (BN) substitution of fullerenes: C60 to C12B24N24 CBN ball. J. Phys. Chem. A 106, 2970 (2002).

    Article  CAS  Google Scholar 

  35. C.Y. Zhang, L.Y. Cui, B.Q. Wang, J. Zhang, and J. Lu: Encapsulation of transition metals in aluminum nitride fullerene: TM@(AlN)12 (TM= Ti, Mn, Fe, Co, and Ni). J. Struct. Chem. 53, 1031 (2012).

    Article  CAS  Google Scholar 

  36. G.Z. Wang, H.K. Yuan, A. Kuang, W.F. Hu, G.L. Zhang, and H. Chen: High-capacity hydrogen storage in Li-decorated (AlN)n (n = 12, 24, 36) nanocages. Int. J. Hydrogen Energy 39, 3780 (2014).

    Article  CAS  Google Scholar 

  37. Y. Taniyasu and M. Kasu: Aluminum nitride deep-ultraviolet light-emitting p-n junction diodes. Diamond Relat. Mater. 17, 1273 (2008).

    Article  CAS  Google Scholar 

  38. Y. Taniyasu, M. Kasu, T. Makimoto, and N. Kobayashi: Triode-type basic display structure using Si-doped AlN field emitters. Phys. Status Solidi A 200, 199 (2003).

    Article  CAS  Google Scholar 

  39. H.L. Wu, R.S. Zheng, W. Liu, S. Meng, and J.Y. Huang: C and Si codoping method for p-type AlN. J. Appl. Phys. 108, 053715 (2010).

    Article  CAS  Google Scholar 

  40. M. Niu, G.T. Yu, G.H. Yang, W. Chen, X.G. Zhao, and X.R. Huang: Doping the alkali atom: An effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg. Chem. 53, 349 (2014).

    Article  CAS  Google Scholar 

  41. E. Shakerzadeh, N. Barazesh, and S.Z. Talebi: A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlattices Microstruct. 76, 264 (2014).

    Article  CAS  Google Scholar 

  42. A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  43. C. Moller and M.S. Plesset: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618 (1934).

    Article  CAS  Google Scholar 

  44. A.E. Reed, R.B. Weinstock, and F. Weinhold: Natural population analysis. J. Chem. Phys. 83, 735 (1985).

    Article  CAS  Google Scholar 

  45. R.F.W. Bader: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893 (1991).

    Article  CAS  Google Scholar 

  46. M.J. Frisch, G.W. Trucks, and H.B. Schlegel: Gaussian 03, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2004).

    Google Scholar 

  47. T. Lu and F. Chen: Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).

    Article  CAS  Google Scholar 

  48. T.A. Keith: 2011 AIMAll 11.12.19 (Overland Park KS: TK Gristmill Software) USA.

    Google Scholar 

  49. W.C. Martin and R. Zalubas: Energy levels of aluminum, Al I through Al XIII. J. Phys. Chem. Ref. Data 8, 817 (1979).

    Article  CAS  Google Scholar 

  50. W.C. Martin and R. Zalubas: Energy levels of silicon, Si I through Si XIV. J. Phys. Chem. Ref. Data 12, 323 (1983).

    Article  CAS  Google Scholar 

  51. K.B.S. Eriksson and J.E. Pettersson: New measurements in the spectrum of the neutral nitrogen atom. Phys. Scr. 3, 211 (1971).

    Article  CAS  Google Scholar 

  52. A.D. Becke and K.E. Edgecombe: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397 (1990).

    Article  CAS  Google Scholar 

  53. B. Silvi and A. Savin: Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683 (1994).

    Article  CAS  Google Scholar 

  54. A. Savin, R. Nesper, S. Wengert, and T.F. Fässler: ELF: The electron localization function. Angew. Chem., Int. Ed. 36, 1808 (1997).

    Article  CAS  Google Scholar 

  55. A.D. McLean and M. Yoshimine: Theory of molecular polarizabilities. J. Chem. Phys. 47, 1927 (1967).

    Article  CAS  Google Scholar 

  56. T. Yanai, D.P. Tew, and N.C. Handy: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the National Science Foundation of China (Grant No. 11164024) and from Northwest Normal University (NWNU-KJCXGC03-62). We also thank Gansu and Shenzhen Computing Center for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Chen, H. The stabilities and electronic structures of AlnSi12-nN12 (n = 0, 1, 2, and 4). Journal of Materials Research 31, 241–249 (2016). https://doi.org/10.1557/jmr.2015.390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.390

Navigation