Skip to main content
Log in

Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nanoCeO2 by aqueous Rhodamine B degradation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We compared the enhancement of photoactivity of transition metal ion (1 mol% Fe, Cu, Mn, and Zn) doped CeO2 nanocatalysts, and examined the effects of oxygen vacancies and the valence of the doped ions. The nanocatalysts were synthesized using a coprecipitation method and were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller isotherm methods and Raman spectroscopy. The photocatalytic activities of these catalysts were tested using aqueous Rhodamine B (RhB) degradation under UV irradiation. The spherical CeO2 nanocatalysts had a mesoporous structure and ∼15 nm average particle size. The catalytic activity was closely related to the oxygen vacancies and the valence of the doped ions. An increase in oxygen vacancies of doped CeO2 decreased the photocatalytic activity. The photocatalytic activities of the catalysts decreased in the order: 1 mol% Fe > Cu > Mn > Zn > undoped CeO2. The 1 mol% Fe doped CeO2 degraded ∼92.6% of the RhB after 3 h of irradiation, and the degradation obeyed pseudo-first-order kinetics. Liquid chromatography–mass spectrometry indicated that the photodegradation of RhB was a stepwise oxidation process. Under continuous oxidation, over a long reaction time, the RhB was completely oxidized to its final products, such as water and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. M.P. Gao, Z.Q. Zeng, B.C. Sun, H.K. Zou, J.F. Chen, and L. Shao: Ozonation of azo dye Acid Red 14 in a microporous tube-in-tube microchannel reactor: Decolorization and mechanism. Chemosphere 89, 190 (2012).

    Article  CAS  Google Scholar 

  2. L.C. Lei, Q.Z. Dai, M.H. Zhou, and X.W. Zhang: Decolorization of cationic red X-GRL by wet air oxidation: Performance optimization and degradation mechanism. Chemosphere 68, 1135 (2007).

    Article  CAS  Google Scholar 

  3. L.J. Li, F.Q. Liu, X.S. Jing, P.P. Ling, and A. Li: Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling. Water Res. 45, 1177 (2011).

    Article  CAS  Google Scholar 

  4. M.H. El-Naas, S.A. Al-Muhtaseb, and S. Makhlouf: Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J. Hazard. Mater. 164, 720 (2009).

    Article  CAS  Google Scholar 

  5. B. Palanisamy, C.M. Babu, B. Sundaravel, S. Anandan, and V. Murugesan: Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol. J. Hazard. Mater. 252–253, 233 (2013).

    Article  Google Scholar 

  6. E.G. Garrido-Ramírez, B.K.G. Theng, and M.L. Mora: Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Appl. Clay Sci. 47, 182 (2010).

    Article  Google Scholar 

  7. A. Szygula, E. Guibal, M.A. Palacín, M. Ruiz, and A.M. Sastre: Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J. Environ. Manage. 90, 2979 (2009).

    Article  CAS  Google Scholar 

  8. T.A. Saleh and V.K. Gupta: Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci. 371, 101 (2012).

    Article  CAS  Google Scholar 

  9. C.X. Lu, P. Yan, J.Z. Wang, A.M. Liu, D. Song, and C. Jiang: Photoinduced degradation of organic solar cells with different microstructure. Chin. Phys. B 23, 8803 (2014).

    Google Scholar 

  10. X.B. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    Article  CAS  Google Scholar 

  11. T. Xia, P. Wallenmeyer, A. Anderson, J. Murowchick, L. Liu, and X.B. Chen: Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Adv. 4, 41654 (2014).

    Article  CAS  Google Scholar 

  12. L. Liu and X.B. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    Article  CAS  Google Scholar 

  13. J. Li, D. Luo, C. Yang, S. He, S.C. Chen, J.W. Lin, L. Zhu, and X. Li: Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation. J. Solid State Chem. 203, 154 (2013).

    Article  CAS  Google Scholar 

  14. W.J. Zhou, G.J. Du, P.G. Hu, Y.Q. Yin, J.H. Li, J.H. Yu, G.C. Wang, J.X. Wang, H. Liu, J.Y. Wang, and H. Zhang: Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants. J. Hazard. Mater. 197, 19 (2011).

    Article  CAS  Google Scholar 

  15. P. Gao, A. Li, D.D. Sun, and W.J. Ng: Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2. J. Hazard. Mater. 279, 96 (2014).

    Article  CAS  Google Scholar 

  16. C.Y. Deng, G.L. Zhang, B. Zou, H.L. Shi, Y.J. Liang, Y.C. Li, J.X. Fu, and W.Z. Wang: TiO2/Ag composite nanowires for a recyclable surface enhanced Raman scattering substrate. Chin. Phys. B 22, 106102 (2013).

    Article  Google Scholar 

  17. X.F. Sun, C.P. Wei, and Q.Y. Li: Preparation and characterization of Ag–Au alloys/SiO2 composite thin films. Chin. Phys. Soc. 58, 5816 (2009).

    CAS  Google Scholar 

  18. N.M. Mahmoodi: Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279, 332 (2011).

    Article  CAS  Google Scholar 

  19. S.S. Fu, H.L. Niu, Z.Y. Tao, J.M. Song, C.J. Mao, S.Y. Zhang, C.L. Chen, and D. Wang: Low temperature synthesis and photocatalytic property of perovskite-type LaCoO3 hollow spheres. J. Alloys Compd. 576, 5 (2013).

    Article  CAS  Google Scholar 

  20. L.M. Song and S.J. Zhang: A simple mechanical mixing method for preparation of visible-light-sensitive NiO–CaO composite photocatalysts with high photocatalytic activity. J. Hazard. Mater. 174, 563 (2010).

    Article  CAS  Google Scholar 

  21. T. Miwa, S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, S.C. Verma, and K. Sugihara: Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. Int. J. Hydrogen Energy 35, 6554 (2010).

    Article  CAS  Google Scholar 

  22. S. Ameen, M.S. Akhtar, H.K. Seo, and H.S. Shin: Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chem. Eng. J. 247, 193 (2014).

    Article  CAS  Google Scholar 

  23. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Phanichphant, A. Nakaruk, P. Koshy, and C.C. Sorrell: Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceram. Int. 39, 3129 (2013).

    Article  CAS  Google Scholar 

  24. M.H. Li, S.J. Zhang, L. Lv, M.S. Wang, W.M. Zhang, and B.C. Pan: A thermally stable mesoporous ZrO2–CeO2–TiO2 visible light photocatalyst. Chem. Eng. J. 229, 118 (2013).

    Article  CAS  Google Scholar 

  25. S.C. Hu, F. Zhou, L.Z. Wang, and J.L. Zhang: Preparation of Cu2O/CeO2 heterojunction photocatalyst for the degradation of Acid Orange 7 under visible light irradiation. Catal. Commun. 12, 794 (2011).

    Article  CAS  Google Scholar 

  26. C.Q. Hu, Q.S. Zhu, Z. Jiang, L. Chen, and R.F. Wu: Catalytic combustion of dilute acetone over Cu-doped ceria catalysts. Chem. Eng. J. 152, 583 (2009).

    Article  CAS  Google Scholar 

  27. C.H. Xia, C.G. Hu, P. Chen, B.Y. Wan, X.S. He, and Y.S. Tian: Magnetic properties and photoabsorption of the Mn-doped CeO2 nanorods. Mater. Res. Bull. 45, 794 (2010).

    Article  CAS  Google Scholar 

  28. N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, and C. Viswanathan: Self assembly of Co doped CeO2 microspheres from nanocubes by hydrothermalmethod and their photodegradation activity on AO7. Mater. Lett. 65, 3320 (2011).

    Article  Google Scholar 

  29. T.S. Santos, W.S.D. Folly, and M.A. Macêdo: Ferromagnetism in diluted magnetic Zn-Co-doped CeO2−δ. Phys. B 407, 3233 (2012).

    Article  CAS  Google Scholar 

  30. Z.L. Wang, Z.W. Quan, and J. Lin: Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping. Inorg. Chem. 46, 5237 (2007).

    Article  Google Scholar 

  31. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, and S. Phanichphant: Photocatalytic degradation of methyl Orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci. Rep. 4, 5757 (2014).

    Article  CAS  Google Scholar 

  32. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, and K.J. Balkus, Jr.: Synthesis, characterization, and photocatalytic activity of y-doped CeO2 nanorods. ACS Catal. 4, 577 (2014).

    Article  CAS  Google Scholar 

  33. H.W. Yan, C.F. Blanford, B.T. Holland, W.H. Smyrl, and A. Stein: General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater. 12, 1134 (2000).

    Article  CAS  Google Scholar 

  34. M. Radović, Z.D. Mitrović, A. Golubović, V. Fruth, S. Preda, M. Šćepanović, and Z.V. Popović: Influence of Fe3+-doping on optical properties of CeO2−y nanopowders. Ceram. Int. 39, 4929 (2013).

    Article  Google Scholar 

  35. P.C.A. Brito, D.A.A. Santos, J.G.S. Duque, and M.A. Maêdo: Structural and magnetic study of Fe-doped CeO2. Phys. B 405, 1821 (2010).

    Article  CAS  Google Scholar 

  36. F. Chen, X.X. Shen, Y.C. Wang, and J.L. Zhang: CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Appl. Catal., B 121–122, 223 (2012).

    Article  Google Scholar 

  37. H. Xu, H.M. Li, G.S. Sun, J.X. Xia, C.D. Wu, Z.X. Ye, and Q. Zhang: Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation. Chem. Eng. J. 160, 33 (2010).

    Article  CAS  Google Scholar 

  38. Z. He, C. Sun, S.G. Yang, Y.C. Ding, H. He, and Z.L. Wang: Photocatalytic degradation of Rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. J. Hazard. Mater. 162, 1477 (2009).

    Article  CAS  Google Scholar 

  39. J.Y. Li, W.H. Ma, P.X. Lei, and J.C. Zhao: Detection of intermediates in the TiO2-assisted photodegradation of Rhodamine B under visible light irradiation. J. Environ. Sci. 19, 892 (2007).

    Article  CAS  Google Scholar 

  40. X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51274106, 51474113, 51474037), the Natural Science Foundation of Jiangsu Provincial Higher Education of China (Grant No. 12KJA430001), the Science and Technology Support Program of Jiangsu Province of China (Grant No. BE2012143, BE2013071), the Jiangsu Province’s Postgraduate Cultivation and Innovation Project of China (Grant CXZZ13-0662, KYLX-1030, SJZZ-0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqian Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Shen, X., Wang, Q. et al. Improvement of catalytic activity and mechanistic analysis of transition metal ion doped nanoCeO2 by aqueous Rhodamine B degradation. Journal of Materials Research 30, 2763–2771 (2015). https://doi.org/10.1557/jmr.2015.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.263

Navigation