Skip to main content
Log in

Ion-beam irradiation and 244Cm-doping investigations of the radiation response of actinide-bearing crystalline waste forms

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Candidate materials for actinide immobilization are subject to alpha-decay event doses that accumulate to values of more than 1020 alpha-decays per gram (tens displacements per atom, dpa) over the extended periods of geologic disposal. To evaluate the radiation-response of actinide-bearing materials, two experimental techniques have been used to accelerate the damage accumulation process: ion-beam irradiations and 244Cm-doping experiments. Based on modern characterization techniques, such as high-resolution transmission electron microscopy, and experimental results that involve ion-beam irradiation and chemical doping with highly active actinides, crystalline ceramics for the immobilization of actinides can be divided into three groups on the basis of their critical doses, Dc, i.e., the dose required for amorphization at 300 K: (i) low resistance to radiation damage accumulation (Dc ∼ 0.2 dpa)–murataite, Ti-perovskite, Fe-garnet; (ii) resistant (0.4 < Dc < 0.6 dpa)–Al-garnet, Ti–Zr-pyrochlore, Al-perovskite; and (iii) highly resistant (Dc > 0.8 dpa)–Zr-, Zr–Ti-, and Sn-pyrochlores. Phases with low critical temperatures (Tc below 600 K) will not become amorphous in a deep geologic repository, as long as the temperature remains between 300 and 550 K, but rather, they will remain crystalline. Only Zr-rich pyrochlore is fully resistant to radiation damage and will remain crystalline over the entire period of its disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A.A. Kopyrin, A.I. Karelin, and V.A. Karelin: Technology of Production and Radiochemical Reprocessing of Nuclear Fuel (Russ. Atomenergoizdat, Moscow, Russia, 2006); 576 pp.

    Google Scholar 

  2. IAEA: Implications of Partitioning and Transmutation in Radioactive Waste Management (IAEA, Vienna, Austria, 2004); 140 pp.

    Google Scholar 

  3. CEA: Treatment and Recycling of Spent Nuclear Fuel (CEA, Paris, France, 2008); 175 pp.

    Google Scholar 

  4. NEA, OECD: Minor Actinide Burning in Thermal Reactors; Report No. 6997; NEA, OECD: Paris, France, 2013; 78 pp.

    Google Scholar 

  5. K. Eckerman, J. Harrison, H-G. Menzel, C.H. Clement: ICRP Publication 119. Compendium of dose coefficients based on ICRP publication 60. Ann. ICRP 41(Suppl.), 39 (2012).

    Article  Google Scholar 

  6. IAEA: Library of Recommended Actinide Decay Data 2011 (IAEA, Vienna, 2013); 442 pp.

    Google Scholar 

  7. NEA, OECD: Fuels and Materials for Transmutation; Report No. 5419; NEA, OECD: Paris, France, 2005; 240 pp.

    Google Scholar 

  8. F. von Hippel, R. Ewing, R. Garwin, and A. Macfarlane: Time to bury plutonium. Nature 485, 167 (2012).

    Article  CAS  Google Scholar 

  9. Radioactive Waste Forms for the Future, W. Lutze and R. Ewing ed.; Elsevier Sci. Publ.: Amsterdam, 1988; 778 pp.

    Google Scholar 

  10. S.V. Stefanovsky, S.V. Yudintsev, R. Gieré, and G.R. Lumpkin: Nuclear waste forms. In Energy, Waste, and the Environment: A Geochemical Perspective, R. Gieré and P. Stille eds.; Geol. Society, Special Publications, 236, Geological Society: London, UK, 2004; p. 37.

    Google Scholar 

  11. N.P. Laverov, V.I. Velichkin, B.I. Omelyanenko, S.V. Yudintsev, V.A. Petrov, and A.V. Bychkov: Isolation of Spent Nuclear Materials: Geological and Geochemical Basis (IPE RAS, Moscow, Russia, 2008); 280 pp.

    Google Scholar 

  12. E.M. Pierce, B.P. McGrail, P.F. Martin, J.C. Marra, B.W. Arey, and K.N. Geiszler: Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions. Appl. Geochem. 22, 1841 (2007).

    Article  CAS  Google Scholar 

  13. A.P. Novikov, S.N. Kalymkov, S. Utsunomiya, R.C. Ewing, F. Horreard, A. Merkulov, S.B. Clark, V.V. Tkachev, and B.F. Myasoedov: Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314, 638 (2006).

    Article  CAS  Google Scholar 

  14. N.P. Laverov, S.V. Yudintsev, T.S. Livshitz, S.V. Stefanovsky, A.N. Lukinykh, and R.C. Ewing: Synthetic minerals with the pyrochlore and garnet structures for immobilization of actinide-containing wastes. Geochem. Int. 48, 1 (2010).

    Article  Google Scholar 

  15. R.C. Ewing, W.J. Weber, and F.W. Clinard, Jr.: Radiation effects in nuclear waste forms for high-level radioactive waste. Progr. Nucl. Energ. 29(2), 63 (1995).

    Article  CAS  Google Scholar 

  16. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.H.K. Salje, E.R. Vance, and S.J. Zinkle: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 1434 (1998).

    Article  CAS  Google Scholar 

  17. R.C. Ewing and W.J. Weber: Actinide waste forms and radiation effects. In The Chemistry of the Actinide and Transactinide Elements, Vol. 6, L.R. Morss, N.M. Edelstein, and J. Fuger eds.; Springer: Dordrecht, The Netherlands, 2010; p. 3813.

    Chapter  Google Scholar 

  18. W.J. Weber and R.C. Ewing: Ceramic waste forms for uranium and transuranium elements. In Uranium: Cradle to Grave, P.C. Burns and G.E. Sigmon eds.; Mineralogical Association of Canada, Short Course Series, 43, 2013; p. 317.

  19. G.R. Lumpkin and T. Geisler-Wierwille: Minerals and natural analogues. In Comprehensive Nuclear Materials, Vol. 5, R.J.M. Konings ed.; Elsevier: Amsterdam, 2012; p. 563.

    Chapter  Google Scholar 

  20. W.J. Weber, J.W. Wald, and Hj. Matzke: Self-radiation damage in Gd2Ti2O7. Mater. Lett. 3, 173 (1985).

    Article  CAS  Google Scholar 

  21. R.C. Ewing, W.J. Weber, and J. Lian: Nuclear waste disposal—Pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 (2004).

    Article  CAS  Google Scholar 

  22. F.G. Karioris, K. Appaji Gowda, L. Cartz, and J.C. Labbe: Damage cross-sections of heavy ions in crystal structures. J. Nucl. Mater. 108–109, 748 (1982).

    Article  Google Scholar 

  23. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids (Pergamon Press, NewYork, 1985).

    Google Scholar 

  24. R.C. Ewing: Nuclear waste forms for actinides. Proc. Natl. Acad. Sci. U. S. A. 96, 3432 (1999).

    Article  CAS  Google Scholar 

  25. W.J. Weber and R.C. Ewing: Plutonium immobilization and radiation effects. Science 289, 2051 (2000).

    Article  CAS  Google Scholar 

  26. D.M. Strachan, R.D. Scheele, E.C. Buck, J.P. Icenhower, A.E. Kozelisky, R.L. Sell, R.J. Elovich, and W.C. Buchmiller: Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore. J. Nucl. Mater. 345, 109 (2005).

    Article  CAS  Google Scholar 

  27. D.M. Strachan, R.D. Scheele, E.C. Buck, A.E. Kozelisky, R.L. Sell, R.J. Elovich, and W.C. Buchmiller: Radiation damage effects in candidate titanates for Pu disposition: Zirconolite. J. Nucl. Mater. 372, 16 (2008).

    Article  CAS  Google Scholar 

  28. A.N. Lukinykh, S.V. Tomilin, A.A. Lizin, and T.S. Livshits: Radiation and chemical resistance of synthetic ceramics based on ferritic garnet. Radiochemistry 50(4), 432 (2008).

    Article  CAS  Google Scholar 

  29. I. Muller and W.J. Weber: Plutonium in crystalline ceramics and glasses. MRS Bull. 26(1), 698 (2001).

    Article  Google Scholar 

  30. W.J. Weber, A. Navrotsky, S. Stefanovsky, E.R. Vance, and E. Vernaz: Material science of high-level waste immobilization. MRS Bull. 24, 46 (2009).

    Article  Google Scholar 

  31. S.X. Wang, B.D. Begg, L.M. Wang, R.C. Ewing, W.J. Weber, and K.V.G. Kutty: Radiation stability of gadolinium zirconates: A waste form for plutonium disposition. J. Mater. Res. 14, 4470 (1999).

    Article  CAS  Google Scholar 

  32. W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobbs, A. Navrotsky, D.L. Price, A.M. Stoneham, and M.C. Weinberg: Radiation effects in glasses used for immobilization of high-level waste and plutonium. J. Mater. Res. 12, 1946 (1997).

    Article  Google Scholar 

  33. J. Lian, S.V. Yudintsev, S.V. Stefanovsky, L.M. Wang, and R.C. Ewing: Ion beam irradiation of U-, Th- and Ce-doped pyrochlores. J. Alloys Compd. 444–445, 429 (2007).

    Article  CAS  Google Scholar 

  34. N.P. Laverov, S.V. Yudintsev, T.S. Yudintseva, S.V. Stefanovsky, R.C. Ewing, J. Lian, S. Utsonomiya, and L.M. Wang: Effect of radiation on properties of confinement matrices for immobilization of actinide-bearing wasters. Geol. Ore Deposits 45, 423 (2003).

    Google Scholar 

  35. W.J. Weber, R.C. Ewing, and A. Meldrum: The kinetics of alpha-decay induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J. Nucl. Mater. 250, 147 (1997).

    Article  CAS  Google Scholar 

  36. W.C. Mosley: Self-radiation damage in curium-244 oxide and aluminate. J. Am. Ceram. Soc. 54, 475 (1971).

    Article  CAS  Google Scholar 

  37. J.M. Rusin, W.J. Gray, and J.W. Wald: Multibarrier Waste Forms—Part II. Characterization and Evaluation. Report No. PNL-2668-2 (Pacific Northwest Laboratory, Richland, WA, 1979).

    Book  Google Scholar 

  38. R.P. Turcotte, J.M. Wald, F.P. Roberts, and J.M. Rusin: Radiation damage in nuclear waste ceramics. J. Am. Ceram. Soc. 65, 589 (1982).

    Article  CAS  Google Scholar 

  39. J.W. Wald and P. Offermann: A study of radiation effects in curium-doped Gd2Ti2O7 (pyrochlore) and CaZrTi2O7 (zirconolite). In Scientific Basis for Nuclear Waste Management V, edited by W. Lutze (Mater. Res. Soc. Symp. Proc. 11, Pittsburgh, PA, 1982) p. 369.

  40. J.W. Wald and W.J. Weber: Effects of self-radiation damage on the leachability of actinide-host phases. In Nuclear Waste Management. Volume 8 of Advances in Ceramics, G.G. Wicks and W.A. Ross eds.; The American Ceramic Society: Columbus, OH, 1984; p. 71.

    Google Scholar 

  41. W.J. Weber, J.W. Wald, and Hj. Matzke: Self-radiation damage in actinide host phases of nuclear waste forms. In Scientific Basis for Nuclear Waste Management VIII, edited by C.M. Jantzen, J.A. Stone, and R.C. Ewing (Mater. Res. Soc. Symp. Proc. 44, Pittsburgh, PA, 1985) p. 679.

  42. W.J. Weber, J.W. Wald, and Hj. Matzke: Effects of self-irradiation damage in Cm-doped Gd2Ti2O7, and CaZrTi2O7. J. Nucl. Mater. 138, 196 (1986).

    Article  CAS  Google Scholar 

  43. W.J. Weber and Hj. Matzke: Radiation effects in actinide host phases. Radiat. Eff. 98, 93 (1986).

    Article  CAS  Google Scholar 

  44. H. Mitamura, S. Matsumoto, T. Miyazaki, T.J. White, K. Nukaga, Y. Togashi, T. Sagawa, S. Tashiro, D.M. Levins, and A. Kikuchi: Self-irradiation damage of a curium-doped titanate ceramic containing sodium-rich high level nuclear waste. J. Am. Ceram. Soc. 73, 3433 (1990).

    Article  CAS  Google Scholar 

  45. H. Mitamura, S. Matsumoto, K.P. Hart, T. Miyazaki, E.R. Vance, Y. Tamura, Y. Togashi, and T.J. White: Aging effect on curium-doped titanate ceramic containing sodium-rich high level nuclear waste. J. Am. Ceram. Soc. 75, 392 (1992).

    Article  CAS  Google Scholar 

  46. H. Mitamura, S. Matsumoto, M.W.A. Stewart, T. Tsuboi, M. Hashimoto, E.R. Vance, K.P. Hart, Y. Togashi, H. Kanazawa, C.J. Ball, and T.J. White: α-Decay damage effects in curium-doped titanate ceramic containing sodium-free high level nuclear waste. J. Am. Ceram. Soc. 77, 2255 (1994).

    Article  CAS  Google Scholar 

  47. H. Mitamura, S. Matsumoto, T. Tusboi, E.R. Vance, B.D. Begg, and K.P. Hart: Alpha-decay damage in Cm-doped perovskite. In Scientific Basis for Nuclear Waste Management XVIII, edited by T. Murakami and R.C. Ewing (Mater. Res. Soc. Symp. Proc. 353, Pittsburgh, PA, 1995) p. 1405.

  48. B.E. Burakov: Crystalline mineral-like matrices for immobilization of actinides. Dr. Sci. Thesis, St-Petersburgh State University, St-Petersburgh, Russia, 2013.

    Google Scholar 

  49. Hj. Matzke and J. van Geel: Incorporation of Pu and other actinides in borosilicate glass and in waste ceramics. In Disposal of Weapon Plutonium, E.R. Merz and C.E. Walter eds.; Kluwer Academic Publishers: The Netherlands, 1996; p. 93.

    Chapter  Google Scholar 

  50. S.V. Yudintsev, A.N. Lukinykh, S.V. Tomilin, A.A. Lizin, and S.V. Stefanovsky: Alpha-decay induced amorphization in Cm-doped Gd2TiZrO7. J. Nucl. Mater. 385, 200 (2009).

    Article  CAS  Google Scholar 

  51. J. Zhang, T.S. Livshits, A.A. Lizin, Q. Hu, and R.C. Ewing: Irradiation of synthetic garnet by heavy ions and a-decay of 244Cm. J. Nucl. Mater. 407, 137 (2010).

    Article  CAS  Google Scholar 

  52. T.S. Livshits, A.A. Lizin, J. Zhang, and R.C. Ewing: Amorphization of rare earth aluminate garnets at ion irradiation and decay of 244Cm admixture. Geol. Ore Deposits 52(4), 267 (2010).

    Article  Google Scholar 

  53. N.P. Laverov, S.V. Yudintsev, S.V. Stefanovsky, B.I. Omelyanenko, and B.S. Nikonov: Murataite matrices for actinide wastes. Radiochemistry 53, 229 (2011).

    Article  CAS  Google Scholar 

  54. J.P. Icenhower, D.M. Strachan, B.P. McGrail, R.D. Sheele, E.A. Rodrigues, J.L. Steele, and V.L. Legore: Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium. Am. Mineral. 91, 39 (2006).

    Article  CAS  Google Scholar 

  55. S.V. Stefanovsky, S.V. Yudintsev, and B.F. Myasoedov: Radiation effects in americium-doped zirconate ceramics. Dokl. Chem. 447, 296 (2012).

    Article  CAS  Google Scholar 

  56. B.E. Burakov, E.B. Anderson, M.V. Zamoryanskaya, M.A. Yagovkina, and E.V. Nikolaeva: Synthesis and characterization of cubic zirconia, (Zr,Gd,Pu)O2, doped with 238Pu. In Scientific Basis for Nuclear Waste Management XXV, edited by B.P. McGrail and G.A. Cragnolino (Mater. Res. Soc. Symp. Proc. 713, Pittsburgh, PA, 2002) p. 333.

  57. R.E. Sykora, P.E. Raison, and R.G. Haire: Self-irradiation induced structural changes in the transplutonium pyrochlores An2Zr2O7 (An = Am, Cf). J. Solid State Chem. 178, 578 (2005).

    Article  CAS  Google Scholar 

  58. G.R. Lumpkin, K.L. Smith, and R.G. Blake: TEM study of radiation damage and annealing of neutron irradiated zirconolite. In Scientific Basis for Nuclear Waste Management XIX, edited by W.M. Murphy and D.A. Knecht (Mater. Res. Soc. Symp. Proc. 412, Pittsburgh, PA, 1996) p. 329.

  59. S. Utsunomiya, L.M. Wang, S. Yudintsev, and R.C. Ewing: Ion irradiation-induced amorphization and nano-crystal formation in garnets. J. Nucl. Mater. 303, 177 (2002).

    Article  CAS  Google Scholar 

  60. S. Utsunomiya, S. Yudintsev, L.M. Wang, and R.C. Ewing: Ion-beam and electron beam irradiation of synthetic britholite. J. Nucl. Mater. 322, 180 (2003).

    Article  CAS  Google Scholar 

  61. J. Lian, L.M. Wang, R.C. Ewing, S.V. Yudintsev, and S.V. Stefanovsky: Ion beam-induced amorphization and order-disorder transitions in the murataite structure. J. Appl. Phys. 97, 113536 (2005).

    Article  CAS  Google Scholar 

  62. S. Utsunomiya, S. Yudintsev, and R.C. Ewing: Radiation effects in ferrite garnet. J. Nucl. Mater. 336, 251 (2005).

    Article  CAS  Google Scholar 

  63. K.R. Whittle, G.R. Lumpkin, M.G. Blackford, R.D. Aughterson, K.L. Smith, and N.J. Zaluzec: Ion-beam irradiation of lanthanum compounds in the system La2O3–Al2O3 and La2O3–TiO2. J. Solid State Chem. 183, 2416 (2010).

    Article  CAS  Google Scholar 

  64. F.X. Zhang, J. Lian, U. Becker, R.C. Ewing, L.M. Wang, J. Hu, and S.K. Saxena: Structural change of layered perovskite La2Ti2O7 at high pressures. J. Solid State Chem. 180, 571 (2007).

    Article  CAS  Google Scholar 

  65. J. Lian, R.C. Ewing, L.M. Wang, and K.B. Helean: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19, 1575 (2004).

    Article  CAS  Google Scholar 

  66. R.C. Ewing: The nuclear fuel cycle versus the carbon cycle. Can. Mineral. 43, 2099 (2005).

    Article  CAS  Google Scholar 

  67. K.L. Smith, M.G. Blackford, G.R. Lumpkin, K. Whitle, and N.J. Zaluzec: Radiation tolerance of A2B2O7 compounds at the cubic—Monoclinic boundary. Microsc. Microanal. 12(2), 1094 (2006).

    Article  Google Scholar 

  68. G.R. Lumpkin, M. Pruneda, S. Rios, K.L. Smith, K. Trachenko, K.R. Whittle, and N.J. Zaluzec: Nature of chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds. J. Solid State Chem. 180, 1512 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed under the support of the Russian Foundation for Basic Research (Projects #13-05-00085 and #14-05-31034).

RCE’s effort and the ion-beam irradiation experiments were supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program under Award Number DE-SC0001089.

The authors thank L.A. Kochetkova, M.S. Nikolsky, B.S. Nikonov for their help in examination of the specimens and V.I. Malkovsky for temperature calculations.

The electron microscopy with in situ ion irradiation was accomplished at Argonne National Laboratory at the IVEM-Tandem Facility, a U.S. Department of Energy Facility funded by the DOE Office of Nuclear Energy, operated under Contract No. DE-AC02-06CH11357 by the University of Chicago Argonne, LLC. L.M. Wang, S. Utsunomiya, J. Lian, J. Zhang, and W. Li thank the staff and scientists at HVEM- and IVEM-Tandem Facility at Argonne National Laboratory for their help and support during the ion irradiation experiments. This facility was essential for the completion of the studies summarized in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Yudintsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Lizin, A.A., Livshits, T.S. et al. Ion-beam irradiation and 244Cm-doping investigations of the radiation response of actinide-bearing crystalline waste forms. Journal of Materials Research 30, 1516–1528 (2015). https://doi.org/10.1557/jmr.2015.23

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.23

Navigation