Skip to main content
Log in

Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reduction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work aims to synthesize PtPd catalytic clusters and to study the effect of the particle size, the curvature and possible alloying on the catalytic activity for oxygen reduction reaction, electrochemical stability, the mass-transfer of redox active species toward catalytic sites and the electro-kinetic of the oxygen reduction reaction (ORR) process. The curvature and the chemical composition of the catalyst surface significantly influence the electrochemically active surface area and catalytic activity toward oxygen reduction, regardless the particle size. The best catalytic activity was accomplished for 45 nm clusters due to possible alloying that enhance the O2 adsorption and dissociation. The complementary impedance studies demonstrated that 45 nm cluster has also the shortest effective diffusion length and the highest reaction rate constant among all morphologies, indicating on superior reactant transport to the catalytic sites. In addition, the 45 nm clusters showed improved electrochemical stability that is believed to be the combined effect of alloying and the compactness of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Y. Yoon, R. Rousseau, R.S. Weber, D. Mei, and J.A. Lercher: First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J. Am. Chem. Soc. 136, 10287 (2014).

    CAS  Google Scholar 

  2. G. Sievers, S. Mueller, A. Quade, F. Steffen, S. Jakubith, A. Kruth, and V. Brueser: Mesoporous Pt–Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. J. Power Sources 268, 255 (2014).

    CAS  Google Scholar 

  3. L. Yi, L. Liu, X. Wang, X. Liu, W. Yi, and X. Wang: Carbon supported Pt–Sn nanoparticles as anode catalyst for direct borohydride–hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. J. Power Sources 224, 6 (2013).

    CAS  Google Scholar 

  4. S. Basri, S.K. Kamarudin, W.R.W. Daud, Z. Yaakob, and A.A.H. Kadhum: Novel anode catalyst for direct methanol fuel cells. Sci. World J. 2014, e547604 (2014).

    Google Scholar 

  5. F. Cheng and J. Chen: Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).

    CAS  Google Scholar 

  6. J.Y. Lee, D.H. Kwak, Y.W. Lee, S. Lee, and K.W. Park: Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions. Phys. Chem. Chem. Phys. 17, 8642 (2015).

    CAS  Google Scholar 

  7. M. Rashid, T.S. Jun, Y. Jung, and Y.S. Kim: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells. Sens. Actuators, B 208, 7 (2015).

    CAS  Google Scholar 

  8. L. Chen, L. Kuai, and B. Geng: Shell structure-enhanced electrocatalytic performance of Au–Pt core–shell catalyst. Cryst. Eng. Commun. 15, 2133 (2013).

    CAS  Google Scholar 

  9. M. Li, X. Guo, Y. Pan, Y. Liang, Y. Wu, Y. Wen, and H. Yang: Pt/single-stranded DNA/graphene nanocomposite with Improved catalytic activity and CO tolerance. J. Mater. Chem. A 3, 10353 (2015).

    CAS  Google Scholar 

  10. Y. Jia, J. Su, Z. Chen, K. Tan, Q. Chen, Z. Cao, Y. Jiang, Z. Xie, and L. Zheng: Composition-tunable synthesis of Pt–Cu octahedral alloy nanocrystals from PtCu to PtCu3 via underpotential-deposition-like process and their electro-catalytic properties. RSC Adv. 5, 18153 (2015).

    CAS  Google Scholar 

  11. M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, and M. Arenz: The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 133, 17428 (2011).

    CAS  Google Scholar 

  12. M. Xiao, S. Li, X. Zhao, J. Zhu, M. Yin, C. Liu, and W. Xing: Enhanced catalytic performance of composition-tunable PtCu nanowire networks for methanol electrooxidation. ChemCatChem 6, 2825 (2014).

    CAS  Google Scholar 

  13. A. Toge, T. Yokono, M. Saito, H. Daimon, A. Tasaka, and M. Inaba: Oxygen reduction reaction activity of shape controlled Pt catalysts. ECS Trans. 41, 2283 (2011).

    CAS  Google Scholar 

  14. Y. Bing, H. Liu, L. Zhang, D. Ghosh, and J. Zhang: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184 (2010).

    CAS  Google Scholar 

  15. B. Fang, B.N. Wanjala, J. Yin, R. Loukrakpam, J. Luo, X. Hu, J. Last, and C-J. Zhang: Electrocatalytic performance of Pt-based trimetallic alloy nanoparticle catalysts in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 37, 4627 (2012).

    CAS  Google Scholar 

  16. R.D. Adams, B. Captain, W. Fu, J.L. Smith, and M.D. Smith: Addition of platinum and palladium tri-tert-butyl phosphine groups to open Pt–Fe and Pt–Ru metal carbonyl clusters. Organometallics 23, 589 (2004).

    CAS  Google Scholar 

  17. Y. Chen, Z. Liang, F. Yang, Y. Liu, and S. Chen: Ni–Pt core–shell nanoparticles as oxygen reduction electrocatalysts: Effect of Pt shell coverage. J. Phys. Chem. C 115, 24073 (2011).

    CAS  Google Scholar 

  18. G. Wang, B. Huang, L. Xiao, Z. Ren, H. Chen, D. Wang, H.D. Abruña, J. Lu, and L. Zhuang: Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643 (2014).

    CAS  Google Scholar 

  19. N. Hodnik, M. Bele, and S. Hočevar: New Pt-skin electrocatalysts for oxygen reduction and methanol oxidation reactions. Electrochem. Commun. 23, 125 (2012).

    CAS  Google Scholar 

  20. M. Bele, P. Jovanovič, A. Pavlišič, B. Jozinović, M. Zorko, A. Rečnik, E. Chernyshova, S. Hočevar, N. Hodnik, and M. Gaberšček: A highly active Pt3Cu intermetallic core–shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol–gel synthesis. Chem. Commun. 50, 13124 (2014).

    CAS  Google Scholar 

  21. W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, and Q. Xin: Nano-structured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta 49, 1045 (2004).

    CAS  Google Scholar 

  22. T. Toda, H. Igarashi, and M. Watanabe: Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J. Electroanal. Chem. 460, 258 (1999).

    CAS  Google Scholar 

  23. H. Yang, W. Vogel, C. Lamy, and N. Alonso-Vante: Structure and electrocatalytic activity of carbon-supported Pt–Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B 108, 11024 (2004).

    CAS  Google Scholar 

  24. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Marković: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).

    CAS  Google Scholar 

  25. T.R. Johns, J.R. Gaudet, E.J. Peterson, J.T. Miller, E.A. Stach, C.H. Kim, M.P. Balogh, and A.K. Datye: Microstructure of bimetallic Pt–Pd catalysts under oxidizing conditions. ChemCatChem 5, 2636 (2013).

    CAS  Google Scholar 

  26. C. Lamy: Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution. Electrochim. Acta 29, 1581 (1984).

    CAS  Google Scholar 

  27. J. Yang, J.Y. Lee, Q. Zhang, W. Zhou, and Z. Liu: Carbon-supported pseudo-core-shell Pd–Pt nanoparticles for ORR with and without methanol. J. Electrochem. Soc. 155, B776 (2008).

    CAS  Google Scholar 

  28. Z.M. Zhou, Z.G. Shao, X.P. Qin, X.G. Chen, Z.D. Wei, and B-L. Yi: Durability study of Pt–Pd/C as PEMFC cathode catalyst. Int. J. Hydrogen Energy 35, 1719 (2010).

    CAS  Google Scholar 

  29. H. Li, G. Sun, N. Li, S. Sun, D. Su, and Q. Xin: Design and preparation of highly active Pt–Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. C 111, 5605 (2007).

    CAS  Google Scholar 

  30. K.J.J. Mayrhofer, B.B. Blizanac, M. Arenz, V.R. Stamenkovic, P.N. Ross, and N.M. Markovic: The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433 (2005).

    CAS  Google Scholar 

  31. K-Y. Chan, J. Ding, J. Ren, S. Cheng, and K.Y. Tsang: Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14, 505 (2004).

    CAS  Google Scholar 

  32. S. Eriksson, U. Nylén, S. Rojas, and M. Boutonnet: Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal., A 265, 207 (2004).

    CAS  Google Scholar 

  33. E.I. Santiago, L.C. Varanda, and H.M. Villullas: Carbon-supported Pt–Co catalysts prepared by a modified polyol process as cathodes for PEM fuel cells. J. Phys. Chem. C 111, 3146 (2007).

    CAS  Google Scholar 

  34. Z. Liu, C. Yu, I.A. Rusakova, D. Huang, and P. Strasser: Synthesis of Pt3Co alloy nanocatalyst via reverse micelle for oxygen reduction reaction in PEMFCs. Top. Catal. 49, 241 (2008).

    CAS  Google Scholar 

  35. A.N. Golikand, M. Asgari, and E. Lohrasbi: Study of oxygen reduction reaction kinetics on multi-walled carbon nano-tubes supported Pt–Pd catalysts under various conditions. Int. J. Hydrogen Energy 36, 13317 (2011).

    CAS  Google Scholar 

  36. K.D. Beard, J.W. Van Zee, and J.R. Monnier: Preparation of carbon-supported Pt–Pd electrocatalysts with improved physical properties using electroless deposition methods. Appl. Catal., B 88, 185 (2009).

    CAS  Google Scholar 

  37. B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia: Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302 (2009).

    CAS  Google Scholar 

  38. Z. Peng and H. Yang: Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 131, 7542 (2009).

    CAS  Google Scholar 

  39. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, and R.R. Adzic: Platinum monolayer on nonnoble core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109, 22701 (2005).

    CAS  Google Scholar 

  40. K. Sasaki, J.X. Wang, H. Naohara, N. Marinkovic, K. More, H. Inada, and R.R. Adzic: Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim. Acta 55, 2645 (2010).

    CAS  Google Scholar 

  41. C. He, S. Desai, G. Brown, and S. Bollepalli: PEM fuel cell catalysts: Cost, performance, and durability. Electrochem. Soc. Interface 14, 41 (2005).

    CAS  Google Scholar 

  42. W. Sheng, S. Chen, E. Vescovo, and Y. Shao-Horn: Size influence on the oxygen reduction reaction activity and instability of supported Pt nanoparticles. J. Electrochem. Soc. 159, B96 (2011).

    Google Scholar 

  43. S. Chen, H.A. Gasteiger, K. Hayakawa, T. Tada, and Y. Shao-Horn: Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 157, A82 (2010).

    CAS  Google Scholar 

  44. J. Choe, D. Kim, J. Shim, I. Lee, and Y. Tak: Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells. J. Nanosci. Nanotechnol. 11, 7141 (2011).

    CAS  Google Scholar 

  45. M.B. Vukmirovic, S.T. Bliznakov, K. Sasaki, J.X. Wang, and R.R. Adzic: Electrodeposition of metals in catalyst synthesis: The case of platinum monolayer electrocatalysts. Electrochem. Soc. Interface 20, 33 (2011).

    CAS  Google Scholar 

  46. X. Huang, Y. Li, Y. Li, H. Zhou, X. Duan, and Y. Huang: Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 12, 4265 (2012).

    CAS  Google Scholar 

  47. H. Zhang, M. Jin, J. Wang, W. Li, P.H.C. Camargo, M.J. Kim, D. Yang, Z. Xie, and Y. Xia: Synthesis of Pd–Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 133, 6078 (2011).

    CAS  Google Scholar 

  48. G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, and T. Lu: One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 117, 9826 (2013).

    CAS  Google Scholar 

  49. J.M. Doña Rodríguez, J.A. Herrera Melián, and J. Pérez Peña: Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. J. Chem. Educ. 77, 1195 (2000).

    Google Scholar 

  50. A. Ignaszak, C. Song, W. Zhu, J. Zhang, A. Bauer, R. Baker, V. Neburchilov, S. Ye, and S. Campbell: Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochim. Acta 69, 397 (2012).

    CAS  Google Scholar 

  51. R.D. Vengrenovich, B.V. Ivanskii, I.I. Panko, S.V. Yarema, V.I. Kryvetskyi, and M.O. Stasyk: Ostwald ripening of the platinum nanoparticles in the framework of the modified LSW theory. J. Nanomater. 2014, 821584 (2014).

    Google Scholar 

  52. R.K. Ahluwalia, S. Arisetty, J-K. Peng, R. Subbaraman, X. Wang, N. Kariuki, D.J. Myers, R. Mukundan, R. Borup, and O. Polevaya: Dynamics of particle growth and electrochemical surface area loss due to platinum dissolution. J. Electrochem. Soc. 161, F291 (2014).

    CAS  Google Scholar 

  53. X. Ye, Q. Yang, Y. Wang, and N. Li: Electrochemical behavior of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. Talanta 47, 1099 (1998).

    CAS  Google Scholar 

  54. D. Li, C. Wang, D.S. Strmcnik, D.V. Tripkovic, X. Sun, Y. Kang, M. Chi, J.D. Snyder, D. van der Vliet, Y. Tsai, V.R. Stamenkovic, S. Sun, and N.M. Markovic: Functional links between Pt single crystal morphology and nanoparticles with different size and shape: The oxygen reduction reaction case. Energy Environ. Sci. 7, 4061 (2014).

    CAS  Google Scholar 

  55. M.C.S. Escaño and H. Kasai: First-principles study on surface structure, thickness and composition dependence of the stability of Pt-skin/Pt3Co oxygen-reduction-reaction catalysts. J. Power Sources 247, 562 (2014).

    Google Scholar 

  56. C. Song and J. Zhang: Electrocatalytic Oxygen Reduction Reaction in PEM Fuel Cell Electrocatalysts and Catalyst Layers, J. Zhang ed.; Springer: London, 2008; p. 89.

  57. J. Li, G. Wang, J. Wang, S. Miao, M. Wei, F. Yang, L. Yu, and X. Bao: Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 7, 1519 (2014).

    CAS  Google Scholar 

  58. J. Otomo, X. Li, T. Kobayashi, C. Wen, H. Nagamoto, and H. Takahashi: AC-impedance spectroscopy of anodic reactions with adsorbed intermediates: Electro-oxidations of 2-propanol and methanol on carbon-supported Pt catalyst. J. Electroanal. Chem. 573, 99 (2004).

    CAS  Google Scholar 

  59. C. Gabrielli, M. Keddam, N. Portail, P. Rousseau, H. Takenouti, and V. Vivier: Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies. J. Phys. Chem. B 110, 20478 (2006).

    CAS  Google Scholar 

  60. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, and D. Morgan: Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 46, 285 (2007).

    CAS  Google Scholar 

  61. R.M. Darling and J.P. Meyers: Mathematical model of platinum movement in PEM fuel cells. J. Electrochem. Soc. 152, A242 (2005).

    CAS  Google Scholar 

  62. H.A. Gasteiger, S.S. Kocha, B. Sompalli, and F.T. Wagner: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 56, 9 (2005).

    CAS  Google Scholar 

  63. M. Shao, P. Liu, J. Zhang, and R. Adzic: Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B 111, 6772 (2007).

    CAS  Google Scholar 

  64. E.F. Holby, W. Sheng, Y. Shao-Horn, and D. Morgan: Pt nanoparticle stability in PEM fuel cells: Influence of particle size distribution and crossover hydrogen. Energy Environ. Sci. 2, 865 (2009).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Stephanie Höppener for EDX mapping and Dr. Igor Perevyazko for his help and an access to a high speed centrifugation. This work was carried out with the financial support of Carl-Zeiss foundation (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ignaszak.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tymen, S., Undisz, A., Rettenmayr, M. et al. Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reduction. Journal of Materials Research 30, 2327–2339 (2015). https://doi.org/10.1557/jmr.2015.212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.212

Navigation