Skip to main content
Log in

In situ stress measurements during direct MOCVD growth of GaN on SiC

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ curvature measurements were used to compare the stress evolution of GaN films grown directly on 6H-SiC via a two-step temperature growth to films grown with an AlN buffer layer. The two-step temperature growth consisted of an initial low-temperature and a main high-temperature GaN layer. In the case of GaN grown directly on 6H-SiC, the high-temperature layer initiated growth under compressive stress which transitioned to tensile stress. Films grown directly on 6H-SiC exhibited a reduction in the threading dislocation (TD) density and an improvement in the surface roughness compared to growth on the AlN buffer layer. Furthermore, transmission electron microscopy of the GaN grown directly on 6H-SiC revealed predominant (a + c)-type TD along with basal plane stacking faults and \(\left\{{11\bar 20} \right\}\) prismatic stacking faults. Channeling cracks were observed in the GaN film when the AlN buffer layer was not utilized. This was attributed to tensile stress induced from the thermal expansion coefficient mismatch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S. Araujo, M. Kazanbas, M. Wendt, T. Kleeb, and P. Zacharias: Prospects of GaN devices in automotive electrification. In Proceedings of the IEEE PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy, 2014; pp. 1–8.

    Google Scholar 

  2. T. Kachi: GaN power devices for automotive applications. In IEEE Compound Semiconductor Integrated Circuit Symposium, 2007. (IEEE, 2007); pp. 1–4.

    Google Scholar 

  3. T. Kachi: Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53, 100210 (2014).

    Article  CAS  Google Scholar 

  4. Z.J. Shen and I. Omura: Power semiconductor devices for hybrid, electric, and fuel cell vehicles. Proc. IEEE 95, 778–789 (2007).

    Article  Google Scholar 

  5. P. Ning, Z. Liang, F. Wang, and L. Marlino: Power module and cooling system thermal performance evaluation for HEV application. In Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012. (IEEE, 2012); pp. 2134–2139.

    Chapter  Google Scholar 

  6. U.K. Mishra, P. Parikh, and Y.F. Wu: AlGaN/GaN HEMTs—An overview of device operation and applications. Proc. IEEE 90, 1022–1031 (2002).

    Article  CAS  Google Scholar 

  7. S.C. Binari, P.B. Klein, and T.E. Kazior: Trapping effects in GaN and SiC microwave FETs. Proc. IEEE 90, 1048–1058 (2002).

    Article  CAS  Google Scholar 

  8. I. Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Vetury, U.K. Mishra, I.P. Smorchkova, S. Keller, C. Nguyen, and E. Kohn: Current instabilities in GaN-based devices. IEEE Electron Device Lett. 22, 62–64 (2001).

    Article  CAS  Google Scholar 

  9. M. Su, C. Chen, L. Chen, M. Esposto, and S. Rajan: Challenges in the automotive application of GaN power switching devices. In International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH 2012) 27, 2012.

  10. S. Chowdhury, B.L. Swenson, M.H. Wong, and U.K. Mishra: Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 74014 (2013).

    Article  CAS  Google Scholar 

  11. T. Uesugi and T. Kachi: Which are the future GaN power devices for automotive applications, lateral structures or vertical structures? In Proceeding of CSMantech. (CS MANTECH, 2011); p. 307.

    Google Scholar 

  12. T. Oka, Y. Ueno, T. Ina, and K. Hasegawa: Vertical GaN-based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express 7, 021002 (2014).

    Article  CAS  Google Scholar 

  13. M. Kanechika, M. Sugimoto, N. Soejima, H. Ueda, O. Ishiguro, M. Kodama, E. Hayashi, K. Itoh, T. Uesugi, and T. Kachi: A vertical insulated gate AlGaN/GaN heterojunction field-effect transistor. Jpn. J. Appl. Phys. 46, L503 (2007).

    Article  CAS  Google Scholar 

  14. Y.F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, and P. Parikh: 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25, 117–119 (2004).

    Article  CAS  Google Scholar 

  15. Y.F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586–590 (2001).

    Article  CAS  Google Scholar 

  16. P.G. Neudeck, R.S. Okojie, and L.Y. Chen: High-temperature electronics—A role for wide bandgap semiconductors?Proc. IEEE 90, 1065–1076 (2002).

    Article  Google Scholar 

  17. R.F. Davis, T.W. Weeks, Jr., M.D. Bremser, S. Tanaka, R.S. Kern, Z. Sitar, K.S. Ailey, W.G. Perry, and C. Wang: Issues and examples regarding growth of AlN, GaN and AlxGa1−xN thin films via OMVPE and gas source MBE. MRS Online Proc. Libr. 395, 3–13 (1995).

    Article  Google Scholar 

  18. H. Lahrèche, M. Leroux, M. Laügt, M. Vaille, B. Beaumont, and P. Gibart: Buffer free direct growth of GaN on 6H–SiC by metalorganic vapor phase epitaxy. J. Appl. Phys. 87, 577 (2000).

    Article  Google Scholar 

  19. M-A. Di Forte-Poisson, A. Romann, M. Tordjman, M. Magis, J. Di Persio, C. Jacques, and P. Vicente: LPMOCVD growth of GaN on silicon carbide. J. Cryst. Growth 248, 533–536 (2003).

    Article  Google Scholar 

  20. J. Kyeong Jeong, J-H. Choi, H. Jin Kim, H-C. Seo, H. Jin Kim, E. Yoon, C.S. Hwang, and H.J. Kim: Buffer-layer-free growth of high-quality epitaxial GaN films on 4H-SiC substrate by metal-organic chemical vapor deposition. J. Cryst. Growth 276, 407–414 (2005).

    Article  CAS  Google Scholar 

  21. M. Losurdo, M.M. Giangregorio, G. Bruno, T-H. Kim, S. Choi, and A. Brown: Buffer free MOCVD growth of GaN on 4H-SiC: Effect of substrate treatments and UV-photoirradiation. Phys. Status Solidi 203, 1607–1611 (2006).

    Article  CAS  Google Scholar 

  22. J.A. Floro, E. Chason, and S.R. Lee: Real time measurement of epilayer strain using a simplified wafer curvature technique. MRS Online Proc. Libr. 406, 491–496 (1995).

    Article  Google Scholar 

  23. G.G. Stoney: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172–175 (1909).

    Article  CAS  Google Scholar 

  24. D.D. Koleske, A.J. Fischer, A.A. Allerman, C.C. Mitchell, K.C. Cross, S.R. Kurtz, J.J. Figiel, K.W. Fullmer, and W.G. Breiland: Improved brightness of 380 nm GaN light emitting diodes through intentional delay of the nucleation island coalescence. Appl. Phys. Lett. 81, 1940 (2002).

    Article  CAS  Google Scholar 

  25. D.D. Koleske, M.E. Coltrin, K.C. Cross, C.C. Mitchell, and A.A. Allerman: Understanding GaN nucleation layer evolution on sapphire. J. Cryst. Growth 273, 86–99 (2004).

    Article  CAS  Google Scholar 

  26. R.C. Cammarata, T.M. Trimble, and D.J. Srolovitz: Surface stress model for intrinsic stresses in thin films. J. Mater. Res. 15, 2468–2474 (2000).

    Article  CAS  Google Scholar 

  27. R.C. Cammarata: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994).

    Article  CAS  Google Scholar 

  28. J.D. Acord, S. Raghavan, D.W. Snyder, and J.M. Redwing: In situ stress measurements during MOCVD growth of AlGaN on SiC. J. Cryst. Growth 272, 305–311 (2004).

    Article  CAS  Google Scholar 

  29. A.E. Romanov and J.S. Speck: Stress relaxation in mismatched layers due to threading dislocation inclination. Appl. Phys. Lett. 83, 2569 (2003).

    Article  CAS  Google Scholar 

  30. E. Chason, B.W. Sheldon, L.B. Freund, J.A. Floro, and S.J. Hearne: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).

    Article  CAS  Google Scholar 

  31. F. Spaepen: Interfaces and stresses in thin films. Acta Mater. 48, 31–42 (2000).

    Article  CAS  Google Scholar 

  32. W.D. Nix and B.M. Clemens: Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467–3473 (1999).

    Article  CAS  Google Scholar 

  33. A. Krost, A. Dadgar, J. Bläsing, A. Diez, T.C. Hempel, S. Petzold, J. Christen, and R. Clos: Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile. Appl. Phys. Lett. 85, 3441–3443 (2004).

    Article  CAS  Google Scholar 

  34. S. Raghavan and J.M. Redwing: Growth stresses and cracking in GaN films on (111) Si grown by metal-organic chemical-vapor deposition. I. AlN buffer layers. J. Appl. Phys. 98, 23514 (2005).

    Article  CAS  Google Scholar 

  35. R. Abermann: Measurements of the intrinsic stress in thin metal films. Vacuum 41, 1279–1282 (1990).

    Article  Google Scholar 

  36. R. Koch: The intrinsic stress of polycrystalline and epitaxial thin metal films. J. Phys.: Condens. Matter 6, 9519 (1994).

    CAS  Google Scholar 

  37. H. Harima: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002).

    CAS  Google Scholar 

  38. P. Perlin, C. Jauberthie-Carillon, J.P. Itie, A. San Miguel, I.I. Grzegory, and A. Polian: Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 83–89 (1992).

    Article  CAS  Google Scholar 

  39. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager, III, E. Jones, Z. Liliental-Weber, M. Rubin, E.R. Weber, M.D. Bremser, and R.F. Davis: Strain-related phenomena in GaN thin films. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 17745–17753 (1996).

    Article  CAS  Google Scholar 

  40. Z. Ren, Q. Sun, S-Y. Kwon, J. Han, K. Davitt, Y.K. Song, A.V. Nurmikko, H-K. Cho, W. Liu, J.A. Smart, and L.J. Schowalter: Heteroepitaxy of AlGaN on bulk AlN substrates for deep ultraviolet light emitting diodes. Appl. Phys. Lett. 91, 051116 (2007).

    Article  CAS  Google Scholar 

  41. D. Won, X. Weng, Z. Al Balushi, and J.M. Redwing: Influence of growth stress on the surface morphology of N-polar GaN films grown on vicinal C-face SiC substrates. Appl. Phys. Lett. 103, 241908 (2013).

    Article  CAS  Google Scholar 

  42. M.A. Moram and M.E. Vickers: X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 36502 (2009).

    Article  CAS  Google Scholar 

  43. V. Srikant, J.S. Speck, and D.R. Clarke: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997).

    Article  CAS  Google Scholar 

  44. P. Gay, P.B. Hirsch, and A. Kelly: The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315–319 (1953).

    Article  CAS  Google Scholar 

  45. P. Vermaut, P. Ruterana, G. Nouet, A. Salvador, and H. Morkoç: Prismatic defects in GaN grown on 6H-SiC by molecular beam epitaxy. Mater. Sci. Eng., B 43, 279–282 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant Nos. DMR-1006763 and DMR-1410765 (JMR). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We would like to acknowledge Mr. Joshua J. Maier and Dr. Ke Wang (Materials Characterization Laboratory, The Pennsylvania State University) for FIB-TEM sample preparation and TEM imaging, respectively. We would like to also acknowledge Dr. Xiaojun Weng, Intel Corporation, Hillsboro OR, for TEM discussions and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Redwing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Balushi, Z.Y., Redwing, J.M. In situ stress measurements during direct MOCVD growth of GaN on SiC. Journal of Materials Research 30, 2900–2909 (2015). https://doi.org/10.1557/jmr.2015.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.210

Navigation