Skip to main content
Log in

Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fracture toughness testing of materials at the micrometer scale has become essential due to the continuing miniaturization of devices accompanied by findings of size effects in fracture behavior. Many techniques have emerged in the recent past to carry out fracture toughness measurements at the relevant micro and nanolength scales, but they lack ASTM standards that are prescribed for bulk scale tests. Also, differences in reported values arise at the microscale due to the sample preparation technique, test method, geometry, and investigator. To correct for such discrepancies, we chose four different fracture toughness test geometries in practice, all of them micromachined in the focused ion beam (FIB), to investigate the fracture toughness of Si(100) at the micrometer scale. The average KIC that emerges from all four cases is a constant (0.8 MPa m1/2). The advantages and limitations of each of these geometries in terms of test parameters and the range of materials that can be tested are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. G. Dehm, C. Motz, C. Scheu, H. Clemens, P.H. Maryhofer, and C. Mitterer: Mechanical size effects in miniaturized and bulk materials. Adv. Eng. Mater. 8 (11), 1033–1045 (2006).

    CAS  Google Scholar 

  2. O. Kraft, P.A. Gruber, R. Moenig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010).

    CAS  Google Scholar 

  3. J.R. Greer and J.D. Hosson: Plasticity in small scale metallic systems: Intrinsic vs extrinsic size effect. Prog. Mater. Sci. 56 (6), 654–724 (2011).

    CAS  Google Scholar 

  4. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: On the validity of Hall-Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1684 (1989).

    CAS  Google Scholar 

  5. C.E. Carlton and P.J. Ferreira: What is behind the inverse Hall-Petch effect in nanocrystalline materials?Acta Mater. 55, 3749–3756 (2007).

    CAS  Google Scholar 

  6. C.P. Chen and M.H. Leipold: Fracture toughness of Si. Am. Ceram. Soc. Bull. 59, 469–472 (1980).

    CAS  Google Scholar 

  7. F. Ebrahimi and L. Kalwani: Fracture anisotropy in silicon single crystal. Mater. Sci. Eng., A 268, 116–126 (1999).

    Google Scholar 

  8. S. Sundararajan and B. Bhushan: Development of AFM based techniques to measure mechanical properties of nanoscale structures. Sens. Actuators, A 101, 338–351 (2002).

    CAS  Google Scholar 

  9. T. Ando, X. Li, S. Nakao, T. Kasai, H. Tanaka, M. Shikida, and K. Sato: Fracture toughness measurement of thin film silicon. Fatigue Fract. Eng. Mater. Struct. 28, 687–694 (2005).

    CAS  Google Scholar 

  10. M. Tanaka, K. Higashida, H. Nakashima, H. Takagi, and M. Fujiwara: Orientation dependence of fracture toughness measured by indentation methods and its relation to surface energy in single crystal silicon. Int. J. Fract. 139, 383–394 (2006).

    CAS  Google Scholar 

  11. R.O. Ritchie: Failure of silicon: Crack formation and propagation. In 13th Workshop on Crystalline Solar Cell Materials and Processes, Vail, Colorado, 2003.

    Google Scholar 

  12. ASTM E 1820-01: Standard test method for measurement of fracture toughness. In Ann Book ASTM Std, Vol. 03.01, 2001, pp. 1–46.

  13. A. Yawny, J. Malarria, E. Soukup, and M. Sade: Stage for in-situ mechanical loading experiments in a scanning electron microscope with a small chamber. Rev. Sci. Instrum. 68, 1500154 (1997).

    Google Scholar 

  14. B.N. Jaya and M.Z. Alam: Small-scale mechanical testing of materials. Curr. Sci. 105, 1073–1099 (2013).

    CAS  Google Scholar 

  15. J.E.P. Ipina and A.A. Yawny: In-situ observation of damage evolution and fracture toughness measurement by SEM. In Damage Prognosis for Aerospace, Civil and Mechanical Systems, edited by D. J. Inman, D. J. Farrar, V. Lopes, Jr, and V. Steffen, Jr. (2005); pp. 61–73.

    Google Scholar 

  16. R. Podor, J. Ravaoux, and H. Brau: In-situ experiments in the scanning electron microscope chamber. In Scanning Electron Microscopy, edited by V. Kazmiruk. (InTech, 2012); pp. 32–54.

    Google Scholar 

  17. B.N. Jaya, S. Bhowmick, S.A.S. Asif, O.L. Warren and V. Jayaram: Optimisation of clamped beam geometry for fracture toughness testing of micron-scale samples. Philos(2015, in press). DOI.10.1080/14786435.2015.1010623.

  18. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  19. K.J.V. Vliet, L. Prchlik, and J.F. Smith: Direct measurement of indentation frame compliance. J. Mater. Res. 19, 325–331 (2004).

    Google Scholar 

  20. S.A.S. Asif, K.J. Wahl, and R.J. Colton: Nanoindentation and contact stiffness measurement suing force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408–2413 (1999).

    CAS  Google Scholar 

  21. D. Kupka: Fracture experiments of single grain boundaries in ductile metals. PhD Thesis, Helmholtz-Zentrum Geesthacht, Germany, 2013.

    Google Scholar 

  22. E. Huerta, J.E. Corona, A.I. Oliva, F. Aviles, J. Gonzalez-Hernandez: Universal testing machine for mechanical properties of thin materials. Rev. Mex. Fis. 56 (4), 317–322 (2010).

    Google Scholar 

  23. A.C. Fischer-Cripps: Nanoindentation, 2nd ed. (Springer, New York, NY, 2004).

    Google Scholar 

  24. C.M. Peret and J.M. Rodrigues: Stability of crack propagation during bending tests on brittle materials. Ceramica 54, 382–387 (2008).

    Google Scholar 

  25. K. Matoy, H. Schoenherr, T. Detzel, R. Pippan, C. Motz, and G. Dehm: A comparative microcantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518, 247–256 (2009).

    CAS  Google Scholar 

  26. B.N. Jaya, V. Jayaram, and S.K. Biswas: A new method for fracture toughness determination of graded (Pt, Ni)Al bond coats by microbeam bend tests. Philos. Mag. 92, 3326–3345 (2012). Special Issue: Nano-mechanical testing in materials research and development III.

    Google Scholar 

  27. S. Liu, J.M. Wheeler, P.R. Howie, X.T. Zeng, J. Michler, and W.J. Clegg: Measuring the fracture resistance of hard coatings. Appl. Phys. Lett. 102, 1719071–1719074 (2013).

    Google Scholar 

  28. M. Sebastiani, K.E. Johanns, E.G. Herbert, F. Carasitti, and G. M Pharr: A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings. Philos. Mag. (2014). DOI: 10.1080/14786435.2014.913110.

    Google Scholar 

  29. B.N. Jaya and V. Jayaram: Crack stability in edge notched clamped beam specimen: Modeling and experiments. Int. J. Fract. 188, 213–228 (2014).

    CAS  Google Scholar 

  30. M.A. Hopcroft, W.D. Nix, and T.W. Kenny: What is the Young’s modulus of Si?J. Microelectromech. Syst. 19, 229–238 (2010).

    CAS  Google Scholar 

  31. S. Timoshenko and J.N. Goodier: Theory of Elasticity, 2nd ed. (McGraw-Hill, New York, NY, 1951).

    Google Scholar 

  32. M. Sebastiani: Private communication, 2014.

  33. H. Li and J.J. Vlassak: Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J. Mater. Res. 24, 1114–1126 (2009).

    CAS  Google Scholar 

  34. D. Di Maio and S.G. Roberts: Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J. Mater. Res. 20, 299–302 (2005).

    Google Scholar 

  35. K. Takashima and Y. Higo: Fatigue and fracture of a Ni-P amorphous alloy thin film on the micrometer scale. Fatigue Fract. Eng. Mater. Struct. 28, 703–710 (2005).

    CAS  Google Scholar 

  36. T.P. Halford, D. Rudinal, K. Takashima, and Y. Higo: The effect of sample preparation upon the fracture toughness of microsized TiAl. Key Eng. Mater. 297–300, 2416–2422 (2005).

    Google Scholar 

  37. S. Wurster, C. Motz, and R. Pippan: Characterisation of fracture toughness of micron-sized tungsten single crystal notched specimens. Philos. Mag. 92, 1803–1825 (2012).

    CAS  Google Scholar 

  38. F. Iqbal, J. Ast, M. Goeken, and K. Durst: In-situ microcantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 60, 1193–1200 (2012).

    CAS  Google Scholar 

  39. D.E.J. Armstrong, A.J. Wilkinson, and S.G. Roberts: Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philos. Mag. Lett. 91 (6), 394–400 (2011).

    CAS  Google Scholar 

  40. M. Mueller: Microscopic chevron-notch fracture test of alumina reinforcements. Nanobruecken (2014).

  41. F. Iqbal: Fracture mechanisms of γ-TiAl alloys investigated by in-situ experiments in a scanning electron and atomic force microscope. PhD Thesis, Universität Erlangen-Nürnberg, Erlangen, Germany, 2012.

    Google Scholar 

  42. I.C. Noyen and J.B. Cohen: Residual Stress Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987).

    Google Scholar 

  43. A. Brenner and S. Senderoff: Calculation of stress in electrodeposits from the curvature of a plated strip. J. Res. Natl. Bur. Stand. 42, 105–123 (1949).

    CAS  Google Scholar 

  44. J.W. Ager III and M.D. Drory: Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition. Phys. Rev. B. 48, 2601–2607 (1993).

    CAS  Google Scholar 

  45. W. Fang and J. Wickert: Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J. Micromech. Microeng. 6, 301–309 (1996).

    CAS  Google Scholar 

  46. M. Sebastiani, E. Bemporad, F. Carasitti, and N. Schwarzer: Residual stress measurement at the micrometer scale: Focused ion beam milling and nanoindentation testing. Philos. Mag. 91, 1121–1136 (2011).

    CAS  Google Scholar 

  47. W. Beres, A.K. Koul, and R. Thamburaj: A tapered double cantilever beam specimen designed for constant K-testing at elevated temperatures. J. Test. Eval. 25, 536–542 (1997).

    Google Scholar 

  48. E.N. Brown: Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. J. Strain Anal. Eng. Des. 46, 167–186 (2010).

    Google Scholar 

  49. Y. Qiao: PhD Thesis, MIT, 2002.

  50. H.H. Gatzen and M. Beck: Investigations on the friction force anisotropy of the silicon lattice. Wear 254, 1122–1126 (2003).

    CAS  Google Scholar 

  51. G.M. Pharr: The anomalous behavior of silicon during nanoindentation. Mater. Res. Soc. Symp. Proc. 239, 301–312 (1992).

    CAS  Google Scholar 

  52. W.W. Gerberich, D.D. Stauffer, A.R. Beaber, and N.I. Tymiak: A brittleness transition in silicon due to scale. J. Mater. Res. 27, 552–567 (2012).

    CAS  Google Scholar 

  53. Z. Han, K. Zheng, Y.F. Zhang, Z. Zhang, and Z.L. Wang: Low temperature in-situ large strain plasticity of silicon nanowires. Adv. Mater. 19, 2112–2118 (2007).

    CAS  Google Scholar 

  54. F. Oestlund, K.R. Malyska, K. Leifer, L.M. Hale, Y. Tang, R. Ballarini, W.W. Gerberich, and J. Michler: Brittle to ductile transition in uniaxially compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009).

    CAS  Google Scholar 

  55. P. Gludovatz, S. Wuster, A. Hoffmann, and R. Pippan: A study into the crack propagation resistance of pure tungsten. Eng. Fract. Mech. 100, 76–85 (2013).

    Google Scholar 

  56. T. Tsuchiya, J. Sakata, and Y. Taga: Tensile strength and fracture toughness of surface micromachined polycrystalline silicon thin films prepared under various conditions. MRS Symp. Proc. 505, 285–290 (1997).

    Google Scholar 

  57. R.J. Myers and B.M. Hillberry: Effect of notch root radius on the fracture behavior of monocrystalline silicon. In Proceedings, 4th International Conference on Fracture, Waterloo, Canada, Vol. 3, 1001–1005 (1977).

  58. W.N. Sharpe, B. Yuan, and R.L. Edwards: Fracture tests of polysilicon film. MRS Symp. Proc. 505, 51–56 (1997).

    Google Scholar 

  59. S. Rubanov and P.R. Munroe: FIB induced damage in silicon. J. Microsc. 24, 213–221 (2004).

    Google Scholar 

  60. H. Kahn, N. Tayebi, R. Ballarini, R.L. Mullen, and A. H. Heuer: Fracture toughness of polysilicon MEMS devices. Sens. Actuators, A 82, 274–280 (2000).

    CAS  Google Scholar 

  61. I. Chasiotis, S.W. Cho, and K. Jonnalagadda: Fracture toughness and subcritical crack growth in polycrystalline silicon. J. Appl. Mech. 73, 714–722 (2005).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge Dr Marco Sebastiani, Roma Tre, Italy for providing the γ value for calculation of KI in the pillar splitting experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Dehm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaya, B.N., Kirchlechner, C. & Dehm, G. Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. Journal of Materials Research 30, 686–698 (2015). https://doi.org/10.1557/jmr.2015.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.2

Navigation