Skip to main content
Log in

Time-dependent deformation behavior of freestanding and SiNx-supported gold thin films investigated by bulge tests

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel strain-rate jump method was developed for the plane-strain bulge test and used to investigate the time-dependent deformation behavior of gold thin films in the thickness range 100–400 nm. The experimental method is based on an abrupt variation of the pressurization rate. The evaluated strain-rate sensitivity was found to be five times higher for films in freestanding condition (m = 0.094) than for films tested on a SiNx substrate (m = 0.020). Bulge creep tests confirmed this increased time-dependence. The observation of the surface of the freestanding films after the creep tests provided evidence of apparent grain boundary sliding taking place next to intragranular plastic deformation. The out-of-plane deformation was presumably favored by the columnar microstructure of the samples, with grains extending between both free surfaces. In the case of SiNx-supported films, grain boundary sliding was prevented by the good adhesion of gold to the SiNx substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006).

    CAS  Google Scholar 

  2. M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54(20), 5421–5432 (2006).

    Article  CAS  Google Scholar 

  3. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003).

    Article  CAS  Google Scholar 

  4. J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53(2), 189–194 (2005).

    Article  CAS  Google Scholar 

  5. D.S. Gianola, D.H. Warner, J.F. Molinari, and K.J. Hemker: Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline al. Scr. Mater. 55(7), 649–652 (2006).

    Article  CAS  Google Scholar 

  6. B.E. Alaca, K.B. Toga, O. Akar, and T. Akin: Strain-controlled bulge test. J. Mater. Res. 23(12), 3295–3302 (2008).

    Article  CAS  Google Scholar 

  7. R.D. Emery and G.L. Povirk: Tensile behavior of free-standing gold films. Part I. coarse-grained films. Acta Mater. 51(7), 2067–2078 (2003).

    Article  CAS  Google Scholar 

  8. R.D. Emery and G.L. Povirk: Tensile behavior of free-standing gold films. Part II. fine-grained films. Acta Mater. 51(7), 2079–2087 (2003).

    Article  CAS  Google Scholar 

  9. K. Jonnalagadda, N. Karanjgaokar, I. Chasiotis, J. Chee, and D. Peroulis: Strain rate sensitivity of nanocrystalline au films at room temperature. Acta Mater. 58(14), 4674–4684 (2010).

    Article  CAS  Google Scholar 

  10. N. Karanjgaokar, I. Chasiotis, D. Peroulis, and K. Jonnalagadda: Strain rate and creep response of Au and Ni thin films. In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 4, 2009. (Society for Experimental Mechanics, Bethel, CT, 2009); pp. 2373–2381.

    Google Scholar 

  11. L. Wang and B.C. Prorok: Strain rate dependent behavior of nanocrystalline gold films. In 11th International Congress and Exhibition on Experimental and Applied Mechanics, 4, 2008. (Society for Experimental Mechanics, Bethel, CT, 2008); pp. 1854–1859.

    Google Scholar 

  12. I.I. Solonovich: Creep mechanisms of condensed polycrystalline films of copper in the range 20-150 degree C. Phys. Met. Metallogr. 40(3), 158–163 (1975).

    Google Scholar 

  13. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26(11), 1421–1430 (2011).

    Article  CAS  Google Scholar 

  14. J. Weertman: Creep of polycrystalline aluminium as determined from strain rate tests. J. Mech. Phys. Solids 4(4), 230–234 (1956).

    Article  Google Scholar 

  15. M. Cieslar, A. Karimi, and J-L. Martin: Plastic instabilities during biaxial testing of Al-Fe-Si foils. Mater. Sci. Forum 396–402(2), 1079–1084 (2002).

    Article  Google Scholar 

  16. B. Merle and M. Göken: Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests. Acta Mater. 59(4), 1772–1779 (2011).

    Article  CAS  Google Scholar 

  17. E.W. Schweitzer and M. Göken: In situ bulge testing in an atomic force microscope: Microdeformation experiments of thin film membranes. J. Mater. Res. 22(10), 2902–2911 (2007).

    Article  CAS  Google Scholar 

  18. B. Merle and M. Göken: Bulge fatigue testing of freestanding and supported gold films. J. Mater. Res. 29(2), 267–276 (2014).

    Article  CAS  Google Scholar 

  19. J.J. Vlassak and W.D. Nix: New bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 3242–3249 (1992).

    Article  CAS  Google Scholar 

  20. Y. Xiang, X. Chen, and J.J. Vlassak: Plane-strain bulge test for thin films. J. Mater. Res. 20(9), 2360–2370 (2005).

    Article  CAS  Google Scholar 

  21. B. Merle, E.W. Schweitzer, and M. Göken: Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations. Philos. Mag. 92(25–27), 3172–3187 (2012).

    Article  CAS  Google Scholar 

  22. A.H. Cottrell: Logarithmic and Andrade creep. Philos. Mag. Lett. 75(5), 301–307 (1997).

    Article  CAS  Google Scholar 

  23. F.R.N. Nabarro: Theory of Crystal Dislocations (Dover publications, Mineola, NY, USA, 1987).

    Google Scholar 

  24. L.B. Freund: Stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. 54(3), 553–557 (1987).

    Article  CAS  Google Scholar 

  25. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20(11), 2217–2245 (1989).

    Article  Google Scholar 

  26. Y. Xiang and J.J. Vlassak: Bauschinger effect in thin metal films. Scr. Mater. 53(2), 177–182 (2005).

    Article  CAS  Google Scholar 

  27. M. Göken, H.W. Höppel, T. Hausöl, J. Bach, V. Maier, C.W. Schmidt, and D. Amberger: Grain refinement and deformation mechanisms in heterogeneous ultrafine-grained materials processed by accumulative roll bonding. In Proceedings of 33rd Risø Symposium on Materials Science: Nanometals—Status and Perspective, 2012. (Technical University of Denmark, Roskilde, Denmark, 2012); pp. 31–48.

    Google Scholar 

  28. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381(1–2), 71–79 (2004).

    Article  Google Scholar 

  29. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps (Pergamon Press, Oxford, UK, 1982).

    Google Scholar 

  30. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials (Cambridge University Press, Cambridge, UK, 2009).

    Google Scholar 

  31. H. Lüthy, R.A. White, and O.D. Sherby: Grain boundary sliding and deformation mechanism maps. Mater. Sci. Eng. 39(2), 211–216 (1979).

    Article  Google Scholar 

  32. H. Van Swygenhoven and P.M. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B: Condens. Matter Mater. Phys. 64(22), 2241051–2241059 (2001).

    Google Scholar 

  33. V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28(9), 1177–1188 (2013).

    Article  CAS  Google Scholar 

  34. W.F. Hosford: Mechanical Behavior of Materials (Cambridge University Press, Cambridge, UK, 2005).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Peter Pokrowsky from the Hochschule Kaiserslautern in Zweibrücken for providing access to the reactive ion etching facility used to make the gold membranes freestanding. They would also like to thank Petra Rosner from the group of Erdmann Spiecker at the University of Erlangen-Nürnberg for assistance with the evaporation device and Verena Maier from the Austrian Science Academy in Leoben for performing nanoindentation experiments. The authors also gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its “Excellence Initiative”, supports the cluster of excellence “Engineering of Advanced Materials” at the University of Erlangen-Nürnberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Merle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merle, B., Cassel, D. & Göken, M. Time-dependent deformation behavior of freestanding and SiNx-supported gold thin films investigated by bulge tests. Journal of Materials Research 30, 2161–2169 (2015). https://doi.org/10.1557/jmr.2015.184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.184

Navigation