Skip to main content
Log in

Thermoelectric materials for middle and high temperature ranges

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermoelectric generation is one of the strongest candidates for recovering the waste heat from industry and transportation. Some of oxides and silicides are considered to be promising thermoelectric materials because of their high oxidation resistance. Several types of modules using p-type Ca3Co4O9/n-type CaMnO3 and p-type MnSi1.75/n-type Mn3Si4Al2 have been prepared and shown around 4 kW/m2 of maximum power density. The present study described the challenging enhancement of the thermoelectric figure of merit ZT of both oxide and silicide compounds. Introduction of secondary phases and low bulk density using a partial melting method is found to be effective for reducing phonon thermal conductivity in the promising Bi2Sr2Co2Ox. The grain size and distribution of the secondary phases can be controlled by optimizing the parameters of the partial melting method. On the other hand, detailed crystallographic structure of a new n-type Mn3Si4Al2 is clarified and leads to the enhancement of the ZT values by elemental substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19
FIG. 20
FIG. 21
FIG. 22
FIG. 23

Similar content being viewed by others

References

  1. International Energy Agency: World Energy Outlook 2009 Edition (International Energy Agency, Paris, France, 2009); p. 74.

    Book  Google Scholar 

  2. International Energy Agency: World Energy Outlook 2009 Edition (International Energy Agency, Paris, France, 2009); p. 623.

    Book  Google Scholar 

  3. M. Hirata: Syou Enerugi Ron (Ohmu Sha, Paris, France, 1994); p. 37.

    Google Scholar 

  4. Hesei 16 nendo Shou Enerugi Gijutu Fukyusokushinjigyou Houkokusyo, The Energy Conservation Center, Japan, pp. 74–75, 2005, http://www.eccj.or.jp/diffusion/04/diffusion.pdf.

  5. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka: An oxide single crystal with high thermoelectric performance in air. Jpn. J. Appl. Phys. 39, L1127 (2000).

    Article  CAS  Google Scholar 

  6. R. Funahashi and M. Shikano: Bi2Sr2Co2Oy whiskers with high thermoelectric figure of merit. Appl. Phys. Lett. 81, 1459 (2002).

    Article  CAS  Google Scholar 

  7. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, and U. Mizutani: Thermoelectric properties of (Ca, Sr, Bi)2Co2O5 whiskers. Mater. Trans. 42, 956 (2001).

    Article  CAS  Google Scholar 

  8. T. Takeuchi, T. Kondo, K. Soda, U. Mizutani, R. Funahashi, M. Shikano, S. Tsuda, T. Yokoya, S. Shin, and T. Muro: Electronic structure and large thermoelectric power in Ca3Co4O9. J. Electron Spectrosc. Relat. Phenom. 137, 595–599 (2004).

    Article  Google Scholar 

  9. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami: Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl. Phys. Lett. 85, 1036 (2004).

    Article  CAS  Google Scholar 

  10. R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando: Aporable thermoelectric–power–generating module composed of oxide devices. J. Appl. Phys. 99, 066117 (2006).

    Article  Google Scholar 

  11. T. Yamada, Y. Miyazaki, and H. Yamane: Preparation of higher manganese silicide (HMS) bulk and Fe-containing HMS bulk using a Na-Si melt and their thermoelectrical properties. Thin Solid Films 519, 8524 (2011).

    Article  CAS  Google Scholar 

  12. I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji: Effects of Ge doping on micromorphology of MnSi in MnSi∼1.7 and on their thermoelectric transport properties. Jpn. J. Appl. Phys. 44, 8562 (2005).

    Article  CAS  Google Scholar 

  13. R. Wolfe, J.H. Wernick, and S.E. Haszko: Thermoelectric properties of FeSi. Phys. Lett. 19, 449 (1965).

    Article  CAS  Google Scholar 

  14. K. Morikawa, H. Chikauchi, H. Mizoguchi, and S. Sugihara: Improvement of thermoelectric properties of β-FeSi2 by the addition of Ta2O5. Mater. Trans. 48, 2100 (2007).

    Article  CAS  Google Scholar 

  15. R. Funahashi, Y. Matsumura, H. Tanaka, T. Takeuchi, W. Norimatsu, E. Combe, R.O. Suzuki, Y. Wang, C. Wan, S. Katsuyama, M. Kusunoki, and K. Koumoto: Thermoelectric properties of n-type Mn3−xCrxSi4Al2 in air. J. Appl. Phys. 112, 073713 (2012).

    Article  Google Scholar 

  16. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62(1), 166 (2000).

    Article  CAS  Google Scholar 

  17. D. Wang, L. Cheng, Q. Yao, and J. Li: High-temperature thermoelectric properties of Ca3Co4O9+δ with Eu substitution. Solid State Commun. 129, 615 (2004).

    Article  CAS  Google Scholar 

  18. M.A. Madre, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, Sh. Rasekh, and J.C. Diez: Preparation of high-performance Ca3Co4O9 thermoelectric ceramics produced by a new two-step method. J. Eur. Ceram. Soc. 33, 1747 (2013).

    Article  CAS  Google Scholar 

  19. R. Funahashi, I. Matsubara, and S. Sodeoka: Complex oxide having high thermoelectric conversion efficiency. US Patent, US6,544,444 B2, 2003.

  20. E. Combe, R. Funahashi, F. Azough, and R. Freer: Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2Ox bulk materials. J. Mater. Res. 29(12), 1376 (2014).

    Article  CAS  Google Scholar 

  21. T. Itoh and I. Terasaki: Thermoelectric properties of Bi2.3-xPbxSr2.6Co2Oy single crystals. Jpn. J. Appl. Phys. 39, 6658 (2000).

    Article  CAS  Google Scholar 

  22. I. Terasaki, H. Tanaka, A. Satake, S. Okada, and T. Fujii: Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi2-xPbxSr2Co2Oy. Phys. Rev. B 70, 214106 (2004).

    Article  Google Scholar 

  23. W. Shin and N. Murayama: Thermoelectric properties of (Bi,Pb)–Sr–Co–O oxide. J. Mater. Res. 15(2), 382 (2000).

    Article  CAS  Google Scholar 

  24. Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W.S. Seo, and K. Koumoto: Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J. Mater. Chem. 13(5), 1094 (2003).

    Article  CAS  Google Scholar 

  25. U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde: Magnetic properties of single crystalline Mn4Si7. J. Alloys Compd. 361(1), 13–18 (2003).

    Article  CAS  Google Scholar 

  26. O. Schwomma, H. Nowotny, and A. Wittmann: Die Kristallstruktur von Mn11Si19 und deren Zusammenhang mit Disilicid-Typen. Monatsh. Chem. 94, 1–5 (1963) 68.

    Article  Google Scholar 

  27. O. Schwomma, A. Preisinger, H. Nowotny, and A. Wittmann: Untersuchungen im Dreistoff: Mn−Al−Si. Monatsh. Chem. 95, 7–37 (1964) 152.

    Google Scholar 

  28. E.N. Nikitin, V.I. Tarasov, and P.V. Tamarin: Thermal and electrical properties of the higher manganese silicide from 4.2 to 1300 K and its structure. Sov. Phys. Solid State 11, 187–189 (1969).

    Google Scholar 

  29. E.N. Nikitin, V.I. Tarasov, A.A. Andreev, and P.V. Tamarin: Sov. Phys. Solid State 11, 2757–2758 (1970).

    Google Scholar 

  30. I. Nishida: Semiconducting properties of nonstoichiometric manganese silicides. J. Mater. Sci. 7, 435–440 (1970).

    Article  Google Scholar 

  31. V. Petricek, M. Dusek, and L. Palatinus: Crystallographic computing system JANA2006 general features. Z. Kristallogr. 229(5), 345–352 (2014).

    CAS  Google Scholar 

  32. Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, and K. Yubuta: Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ(γ∼1.74). Phys. Rev. B 78, 2141041098–0121.

  33. J. Rodriguez-Carvajal: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55–59 (1993).

    Article  CAS  Google Scholar 

  34. T. Roisnel and J. Rodriguez-Carvajal: WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 378–381, 118–123 (2001).

    Article  Google Scholar 

  35. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  36. J. Tani and H. Kido: Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218 (2005).

    Article  CAS  Google Scholar 

  37. V. Ponnambalam, D.T. Morelli, S. Bhattacharya, and T.M. Tritt: The role of simultaneous substitution of Cr and Ru on the thermoelectric properties of defect manganese silicides MnSiδ (1.73 < δ < 1.75). J. Alloys Compd. 580, 598–603 (2013).

    Article  CAS  Google Scholar 

  38. E. Clementi, D. L Raimondi, and W. P Reinhardt: Atomic screening constants from SCF functions. J. Chem. Phys. 38, 2686 (1963).

    Article  CAS  Google Scholar 

  39. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoji Funahashi.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funahashi, R., Barbier, T. & Combe, E. Thermoelectric materials for middle and high temperature ranges. Journal of Materials Research 30, 2544–2557 (2015). https://doi.org/10.1557/jmr.2015.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.145

Navigation