Skip to main content
Log in

Hydrogenated Si–O–C nanoparticles: Synthesis, structure, and thermodynamic stability

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, for the first time, the inorganic Si-based materials lacking preexisting mixed bonds (O–Si–C, silicon in tetrahedral coordination bonded to both carbon and oxygen) have been successfully used as starting materials in a laser evaporation/condensation system for making hydrogenated silicon oxycarbide (Si–O–C–H) nanoparticles containing mixed bonds. The obtained materials are characterized by spectroscopic, microscopic, and calorimetric measurements. Thermodynamically stable 5–10 nm amorphous Si–O–C–H particles with a complex structure containing a combination of pure and mixed Si-based tetrahedral units (SiOiC4− i; i = 0–4), and a considerable amount of Si–OH and C–H bonds have been synthesized. The nanoparticles possess high surface areas (428–467 m2/g), suggesting potential use in functionalities requiring high surface to volume ratios. In addition, making thermodynamically stable Si–O–C–H ceramics using a pathway different from the polymer route raises the likelihood of formation of similar carbon containing compounds in the planetary accretion and the Earth’s interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. E. Kroke, Y.L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel: Silazane derived ceramics and related materials. Mater. Sci. Eng., R 26, 97 (2000).

    Article  Google Scholar 

  2. P. Colombo, G. Mera, R. Riedel, and G.D. Soraru: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805 (2010).

    CAS  Google Scholar 

  3. G. Mera, A. Navrotsky, S. Sen, H.J. Kleebe, and R. Riedel: Polymer-derived SiCN and SiOC ceramics — Structure and energetics at the nanoscale. J. Mater. Chem. A 1, 3826 (2013).

    Article  CAS  Google Scholar 

  4. G.M. Renlund, S. Prochazka, and R.H. Doremus: Silicon oxycarbide glasses. 2. Structure and properties. J. Mater. Res. 6, 2723 (1991).

    Article  CAS  Google Scholar 

  5. A. Saha, R. Raj, and D.L. Williamson: A model for the nanodomains in polymer-derived SiCO. J. Am. Ceram. Soc. 89, 2188 (2006).

    CAS  Google Scholar 

  6. S.J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel, and A. Navrotsky: Si-29 and C-13 solid-state NMR spectroscopic study of nanometer-scale structure and mass fractal characteristics of amorphous polymer derived silicon oxycarbide ceramics. Chem. Mater. 22, 6221 (2010).

    Article  CAS  Google Scholar 

  7. J. Dixmier, R. Bellissent, D. Bahloul, and P. Goursat: Neutron-diffraction study of the amorphous phase-structure in silicon carbonitride ceramics obtained by pyrolysis of a polyvinylsilazane. J. Eur. Ceram. Soc. 13, 293 (1994).

    Article  CAS  Google Scholar 

  8. J. Seitz, J. Bill, N. Egger, and F. Aldinger: Structural investigations of Si/C/N-ceramics from polysilazane precursors by nuclear magnetic resonance. J. Eur. Ceram. Soc. 16, 885 (1996).

    Article  CAS  Google Scholar 

  9. J. Haug, P. Lamparter, M. Weinmann, and F. Aldinger: Diffraction study on the atomic structure and phase separation of amorphous ceramics in the Si-(B)-C-N system. 1. Si-C-N ceramics. Chem. Mater. 16, 72 (2004).

    Article  CAS  Google Scholar 

  10. C.S. Yang, K.S. Oh, J.Y. Ryu, D.C. Kim, S.Y. Jing, C.K. Choi, H.J. Lee, S.H. Um, and H.Y. Chang: A study on the formation and characteristics of the Si–O–C–H composite thin films with low dielectric constant for advanced semiconductor devices. Thin Solid Films 390, 113 (2001).

    Article  CAS  Google Scholar 

  11. H.J. Lee, K.S. Oh, and C.K. Choi: The mechanical properties of the SiOC(–H) composite thin films with a low dielectric constant. Surf. Coat. Technol. 17, 296 (2003).

    Article  Google Scholar 

  12. C.B. Wanga, T. Gotob, R. Tub, and L.M. Zhang: Preparation of silicon oxycarbide films by laser ablation of SiO/3C–SiC multicomponent targets. Appl. Surf. Sci. 257, 1703 (2010).

    Article  Google Scholar 

  13. Z. Gong, E.G. Wang, G.C. Xu, and Y. Chen: Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films. Thin Solid Films 348, 114 (1999).

    Article  CAS  Google Scholar 

  14. N. Park, S.H. Kim, and G.Y. Sung: Amorphous silicon carbon nitride films grown by the pulsed laser deposition of a SiC-Si3N4 mixed target. ETRI J. 26, 257 (2004).

    Article  Google Scholar 

  15. K.E. Gonsalves, P.R. Strutt, T.D. Xiao, and P.G. Klemens: Synthesis of Si(C, N) nanoparticles by rapid laser polycondensation/crosslinking reactions of an organosilazane precursor. J. Mater. Sci. 27, 3231 (1992).

    Article  CAS  Google Scholar 

  16. Y.El. Kortobi, J. d’Espinose de la Caillerie, and A. Legrand: Local composition of silicon oxycarbides obtained by laser spray pyrolysis. Chem. Mater. 9, 632 (1997).

    Article  Google Scholar 

  17. T. Varga, A. Navrotsky, J.L. Moats, R.M. Morcos, F. Poli, K. Muller, A. Sahay, and R. Raj: Thermodynamically stable SixOyCz polymer-like amorphous ceramics. J. Am. Ceram. Soc. 90, 3213 (2007).

    Article  CAS  Google Scholar 

  18. R.M. Morcos, A. Navrotsky, T. Varga, Y. Blum, D. Ahn, F. Poli, K. Muller, and R. Raj: Energetics of SixOyCz polymer-derived ceramics prepared under varying conditions. J. Am. Ceram. Soc. 91, 2969 (2008).

    Article  CAS  Google Scholar 

  19. A. Karakuscu, A. Ponzoni, P.R. Aravind, G. Sberveglieri, and G.D. Soraru: Gas sensing behavior of mesoporous SiOC glasses. J. Am. Ceram. Soc. 96, 2366 (2013).

    Article  CAS  Google Scholar 

  20. H. Eilers and B.M. Tissue: Synthesis of nanophase ZnO, EU2O3, and ZrO2 by gas-phase condensation with CW-CO2 laser-heating. Mater. Lett. 24, 261 (1995).

    Article  CAS  Google Scholar 

  21. J.M. McHale, G.R. Kowach, A. Navrotsky, and F.J. DiSalvo: Thermochemistry of metal nitrides in the Ca/Zn/N system. Chem. -Eur. J. 2, 1514 (1996).

    Article  CAS  Google Scholar 

  22. A. Navrotsky: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).

    Article  CAS  Google Scholar 

  23. A. Navrotsky: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  24. A. Navrotsky: Thermochemical studies of nitrides and oxynitrides by oxidative oxide melt calorimetry. J. Alloys Compd. 321, 300 (2001).

    Article  CAS  Google Scholar 

  25. A.H. Tavakoli, M.M. Armentrout, M. Narisawa, S. Sen, and A. Navrotsky: White Si-O-C ceramic: Structure and thermodynamic stability. J. Am. Ceram. Soc., in press(DOI:https://doi.org/10.1111/jace.13233).

  26. J.J. Liang, L. Topor, A. Navrotsky, and M. Mitomo: Silicon nitride: Enthalpy of formation of the alpha- and beta-polymorphs and the effect of C and O impurities. J. Mater. Res. 14, 1959 (1999).

    Article  CAS  Google Scholar 

  27. J.J. Liang, A. Navrotsky, V.J. Leppert, M.J. Paskowitz, S.H. Risbud, T. Ludwig, H.J. Seifert, F. Aldinger, and M. Mitomo: Thermochemistry of Si6-ZAlzOzN8-Z (Z = 0 to 3.6) materials. J. Mater. Res. 14, 4630 (1999).

    Article  CAS  Google Scholar 

  28. Y.H. Zhang, A. Navrotsky, and T. Sekine: Energetics of cubic Si3N4. J. Mater. Res. 21, 41 (2006).

    Article  Google Scholar 

  29. S. Sen, S.J. Widgeon, A. Navrotsky, G. Mera, A. Tavakoli, E. Ionescu, and R. Riedel: Carbon substitution for oxygen in silicates in planetary interiors. Proc. Natl. Acad. Sci. 110, 15904 (2013).

    Article  CAS  Google Scholar 

  30. C. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Factsage thermochemical software and databases. In Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 26. (Computer Coupling of Phase Diagrams and Thermochemistry, 2002); pp. 189–228.

  31. R.A. Robie and B.S. Hemingway: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. In U. S. Geological Survey Bulletin 2131. (United States Government Printing Office, Washington, DC, 1995).

    Google Scholar 

  32. R.M. Silverstein, G.C. Bassler, and T.C. Morrill: Spectrometric Identification of Organic Compounds, 5th ed. (Wiley, New York, NY, 1991).

    Google Scholar 

  33. S. Widgeon, G. Mera, Y. Gao, S. Sen, A. Navrotsky, and R. Riedel: Effect of precursor on speciation and nanostructure of SiBCN polymer-derived ceramics. J. Am. Ceram. Soc. 96, 1651 (2013).

    Article  CAS  Google Scholar 

  34. H. Bréquel, J. Parmentier, S. Walter, R. Badheka, G. Trimmel, S. Masse, J. Latournerie, P. Dempsey, C. Turquat, A. Desmartin-Chomel, L. Le Neindre-Prum, U.A. Jayasooriya, D. Hourlier, H-J. Kleebe, G.D. Sorarù, S. Enzo, and F. Babonneau: Systematic structural characterization of the high-temperature behavior of nearly stoichiometric silicon oxycarbide glasses. Chem. Mater. 16, 2585 (2004).

    Article  Google Scholar 

  35. A.H. Tavakoli, R. Campostrini, C. Gervais, F. Babonneau, J. Bill, G.D. Soraru, and A. Navrotsky: Energetics and structure of polymer-derived Si-(B-)O-C glasses: Effect of the boron content and pyrolysis temperature. J. Am. Ceram. Soc. 97, 303 (2014).

    Article  CAS  Google Scholar 

  36. G.C.C. Costa, J.K. McDonough, Y. Gogotsi, and A. Navrotsky: Thermochemistry of onion like carbons. Carbon 69, 490 (2014).

    Article  CAS  Google Scholar 

  37. G.C.C. Gustavo, O. Shenderova, V. Mochalin, Y. Gogotsi, and A. Navrotsky: Thermochemistry of nanodiamond terminated by oxygen containing functional groups. Carbon 80, 544 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Jorgen Rufner and Dana Reusser for their assistance in TEM and mass spectrometric measurements. We acknowledge financial supports by the National Science Foundation, grant DMR-124077 for salary support and materials science aspects of this work and by the Deep Carbon Observatory funded by the Sloan Foundation for inspiring us to consider the geologic and planetary relevance of these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, A.H., Armentrout, M.M., Sen, S. et al. Hydrogenated Si–O–C nanoparticles: Synthesis, structure, and thermodynamic stability. Journal of Materials Research 30, 295–303 (2015). https://doi.org/10.1557/jmr.2014.376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.376

Navigation