Skip to main content
Log in

Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The process of laser-induced brazing constitutes a potential option for connecting several ceramic components (n- and p-type ceramic bars and ceramic substrate) of a thermoelectric generator (TEG) unit. For the construction of the TEGs, TiOx and BxC were used as thermoelectric bars and AlN was used as substrate material. The required process time for joining is well below that of conventional furnace brazing processes and, furthermore, establishes the possibility of using a uniform filler system for all contacting points within the thermoelectric unit. In the work reported here, the application-specific optimization of the laser-joining process is presented as well as the adapted design of the thermoelectric modules. The properties of the produced bonding were characterized by using fatigue strength and microstructural investigations. Furthermore, the operational reliability of the modules was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. D.M. Rowe: Generals principles and theoretical considerations. In Thermoelectrics Handbook: Macro to Nano, D.M. Rowe ed.; Taylor & Francis: Boca Raton, USA, 2006; p. 1–1.

    Google Scholar 

  2. J. Sommerlatte, K. Nielsch, and H. Böttner: Thermoelektrische Multitalente. Phys. J. 6, 35 (2007).

    CAS  Google Scholar 

  3. C.W. Maranville and P. Schmitz: Thermoelectric for waste heat recovery and climate control in automobiles. In Thermoelectrics Goes Automotive, D. Jänsch ed.; Expert Verlag: Berlin, Germany, 2011; p. 1.

    Google Scholar 

  4. M. Zebatjadi; K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  5. X. Xi, G. Matijasevic, L. Ha, and D. Baxter: Fabrication of thermoelectric modules using thermoelectric pastes and an additive technology. In Thermoelectric Materials, T.M. Tritt, M.G. Kanatzidis, G.D. Mahan, and H.B. Lyon Jr. ed.; (MRS Proceedings 545, Boston, U.S.A., 1998), p. 143.

  6. J.R. Lim, J.F. Whitacre, J-P. Fleurial, C-K. Huang, M. Ryan, and N.V. Myung: Fabrication method for thermoelectric nanodevice. Adv. Mater. 17, 1488 (2005).

    Article  CAS  Google Scholar 

  7. J.G. Noudem, S. Lemonnier, M. Prevel, E.S. Reddy, E. Guilmeau, and C. Goupil: Thermoelectric ceramics for generators. J. Eur. Ceram. Soc. 28, 41 (2008).

    Article  CAS  Google Scholar 

  8. T. Jinushi, M. Okahara, Z. Ishijima, H. Shikata, and M. Kambe: Development of the high performance thermoelectric modules for high temperature heat sources. In Materials Science Forum 534–536, D.Y. Yoon, S-J.L. Kang, K.Y. Eun, and Y-S. Kim ed.; (Progress in Powder Metallurgy, Switzerland, 2007), p. 1521.

  9. H. Muta, K. Kirosaki, and S. Yamanaka: Thermoelectric properties of doped BaTiO3-SrTiO3 solid solution. J. Alloys Compd. 368, 22 (2004).

    Article  CAS  Google Scholar 

  10. H. Muta, A. Ieda, K. Kurosaki, and S. Yamanaka: Substitution effect on the thermoelectric properties of alkaline earth titanate. Mater. Lett. 58, 3868 (2004).

    Article  CAS  Google Scholar 

  11. Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren: Thermoelectric property studies on bulk TiOx with x from 1 to 2. Appl. Phys. Lett. 91, 052505 (2007).

    Article  Google Scholar 

  12. T. Mori and T. Nishimura: Thermoelectric properties of homologous p- and n-type boron-rich borides. J. Solid State Chem. 179, 2908 (2006).

    Article  CAS  Google Scholar 

  13. M. Backhaus-Ricoult, J.R. Rustad, D. Vargheese, I. Dutta, and K. Work: Levers for thermoelectric properties in titania-based ceramics. J. Electron. Mater. 41, 1636 (2012).

    Article  CAS  Google Scholar 

  14. N. Okinaka and T. Akiyama: Thermoelectric properties of non-stoichiometric titanium oxides for waste heat recovery in steelworks. ISIJ Int. 50, 1296 (2010).

    Article  CAS  Google Scholar 

  15. D-K. Lee, J-I. Jeon, M-H. Kim, W. Choi, and H-I. Yoo: Oxygen nonstoichiometry (δ) of TiO2-δ revisited. J. Solid State Chem. 178, 185 (2005).

    Article  CAS  Google Scholar 

  16. R.F. Bartholomew and D.R. Frankl: Electrical properties of some titanium oxides. Phys. Rev. 187, 828 (1969).

    Article  CAS  Google Scholar 

  17. I. Tsuyumoto, T. Hosono, and M. Murata: Thermoelectric power in nonstoichiometric orthorhombic titanium oxides. J. Am. Ceram. Soc. 89, 2301 (2006).

    CAS  Google Scholar 

  18. J.R. Smith, R.L. Clarke, and F.C. Walsh: Electrodes based on Magneli phase titanium oxides: The properties and applications of Ebonex® materials. J. Appl. Electrochem. 28, 1021 (1998).

    Article  CAS  Google Scholar 

  19. H. Werheit: Thermoelectric properties of boron-rich solids and their possibilities of technical application. In Proceedings of the 25th International Conference on Thermoelectrics, ICT06, P. Rogl ed.; IEEE, Vienna, Austria, 2006, p. 159.

    Chapter  Google Scholar 

  20. H. Werheit: Present knowledge of electronic properties and charge transport of icosahedral boron-rich solids. In J. Phys.: Conference Series, Vol. 176, T. Tanaka ed.; (American Institute of Physics Inc., 16th International Symposium on Boron, Borides and Related Materials, Matsue, Japan, 2009), p. 012016.

  21. D. Amin: Unusual properties of icosahedral boron-rich solids. J. Solid State Chem. 179, 2791 (2006).

    Article  Google Scholar 

  22. F. Thevenot: Boron carbide–A comprehensive review. J. Eur. Ceram. Soc. 6, 205 (1990).

    Article  CAS  Google Scholar 

  23. V. Domnich, S. Reynaud, R.A. Haber, and M. Chhowalla: Boron carbide: Structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605 (2011).

    Article  CAS  Google Scholar 

  24. C. Wood: Boron carbides as high temperature thermoelectric materials. In Boron-Rich Solids, D. Emin ed.; (AIP Conf. Proc. 140, Albuquergue, USA, 1986), p. 362.

  25. D.M. Rowe: Thermoelectrics and Its Energy Harvesting, 1st ed. (CRC Press, Boca Raton, USA, 2012), p. 14–1.

    Google Scholar 

  26. R. Funahashi, S. Urata, T. Mihara, N. Nabeshima, and K. Iwasaki: Power generation using oxide thermoelectric modules. Adv. Sci. Technol. 46, 158 (2006).

    Article  CAS  Google Scholar 

  27. J.A. Fernie, R.A.L. Drew, and M. Knowles: Joining of engineering ceramics. Int. Mater. Rev. 54, 283 (2009).

    Article  CAS  Google Scholar 

  28. J.V. Naidich: The wettability of solids by liquid metal. Prog. Surf. Membr. Sci. 14, 353 (1981).

    Article  CAS  Google Scholar 

  29. Fr-W. Bach, E. Doege, I. Kutlu, and A. Huskic: Aktivlöten von keramischen Segmenten für den Einsatz in verschleißkritischen Bereichen von Schmiedegesenken. Materialwiss. Werkstofftechn. 33, 673 (2002).

    Article  CAS  Google Scholar 

  30. W. Lippmann, M. Herrmann, C. Hille, A. Hurtado, A-M. Reinecke, and R. Wolf: Laser joining of ceramics. CFI-Ceram. Forum Int. (Sonderheft) 85, 60 (2008).

    Google Scholar 

  31. F. Heilmann, G. Rixecker, F-D. Börner, W. Lippmann, and A. Hurtado: Fe2O3-doped forsterite ceramics as a joining partner for ZrO2 in a laser brazing process. J. Eur. Ceram. Soc. 29, 2783 (2009).

    Article  CAS  Google Scholar 

  32. F-D. Börner, W. Lippmann, and A. Hurtado: Laser-joined Al2O3 and ZrO2 ceramics for high-temperature applications. J. Nucl. Mater. 405, 1 (2010).

    Article  Google Scholar 

  33. T. Koppitz, D. Federmann, S. Reichle, U. Reisgen, J. Remmel, and H.R. Zerfass: Weiterentwicklung des Reactive-Air-Brazing als Fügetechnik für Werkstoffkombinationen der Hochtemperaturbrennstoffzelle. DVS-Ber. 243, 124 (2007).

    CAS  Google Scholar 

  34. O. Saitoh, A. Suzumura, W. Miyagawa, and H. Ogawa: The erosion phenomena of silicon nitride at the brazed interface by active metal brazing filler. Q. J. Jpn. Weld. Soc. 18, 236 (2000).

    Article  CAS  Google Scholar 

  35. H. Klose: Beitrag zur Berechnung, Herstellung und Charakterisierung von verstärkten Aktivloten. Diss., TU Chemnitz, 1999.

  36. F-D. Börner, W. Lippmann, M. Schreier, and A. Hurtado: Entwicklung einer Technologie zum Laserfügen thermoelektrischer Generatoren aus Keramik. In Neue Werkstoffe und Technologien für nachhaltige Produkte und Prozesse, W.A. Hufenbach and M. Gude ed.; Verlag Wissenschaftliche Skripte, Dresden, Germany, 2012, p. 156.

    Google Scholar 

  37. W. Tillmann: Fügen, in Technische Keramik, 1st ed.; W. Kollenberg ed.; Vulkan-Verlag Essen: Germany, 2004; p. 445.

    Google Scholar 

  38. S.P. Yushanov, L.T. Gritter, J.S. Crompton, and K.C. Koppenhoefer: Multiphysics analysis of thermoelectric phenomena. In Seventh Annual Conference on Multiphysics Modeling and Simulation, L. Sansone ed.; (Proceedings of the 2011 COMSOL Conference, Boston, USA, 2011).

  39. G. Poulain, D. Blanc, A. Kaminski, B. Semmache, and M. Lemiti: Modeling of a laser processing for advanced silicon solar cells. In Sixth Annual Conference on Multiphysics Modeling and Simulation, Y. Rao ed.; Proceedings of the European COMSOL Conference 2010, Paris, France. (Beuth Verlag GmbH, Germany, 2010).

    Google Scholar 

  40. DIN 843–851: European Standard/Monolithic Ceramics. Mechanical Properties at Room Temperature. Part 1: Determination of Flexural Strength, 1995.

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the European Union and the Free State of Saxony Grant No. SAB 13923/2379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floriana-Dana Börner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Börner, FD., Schreier, M., Feng, B. et al. Development of laser-based joining technology for the fabrication of ceramic thermoelectric modules. Journal of Materials Research 29, 1771–1780 (2014). https://doi.org/10.1557/jmr.2014.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.216

Navigation