Skip to main content
Log in

Laser metal deposition and selective laser melting of Fe–28 at.% Al

  • Metal
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The iron aluminide Fe3Al has been successfully processed by selective laser melting (SLM) and laser metal deposition (LMD). Process parameters have been determined by which defect free and dense (>99.5%) samples were produced. However, due to the low thermal conductivity of Fe3Al, preheating the substrate to 200 °C was necessary to prevent cracking during cooling. Microstructural characterization by electron backscatter diffraction (EBSD) showed that in spite of the high cooling rates large elongated grains grew in the building direction, more distinctive for SLM than for LMD. These grains show a continuous change in the crystallographic orientation. Evaluation of the compressive flow stress showed that the anisotropic microstructure results in anisotropic mechanical properties, depending whether the samples are loaded in building direction or perpendicular to it. The alloy shows a very high strength up to 600 °C and–concerning the coarse microstructure–becomes ductile already at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. C. Sykes and J.W. Bampfylde: The physical properties of iron-aluminium alloys. J. Iron Steel Inst. 130, 389 (1934).

    Google Scholar 

  2. T. Tomaszewicz and G.R. Wallwork: Iron-aluminium alloys: A review of their oxidation behaviour. Rev. High-Temp. Mater. 4(1), 75 (1978).

    CAS  Google Scholar 

  3. C.G. McKamey, J.H. DeVan, P.F. Tortorelli, and V.K. Sikka: A review of recent developments in Fe3Al-based alloys. J. Mater. Res. 6(8), 1779 (1991).

    Article  CAS  Google Scholar 

  4. P. Kratochvil: The history of the search and use of heat resistant Pyroferal alloys based on FeAl. Intermetallics 16(4), 587 (2008).

    Article  CAS  Google Scholar 

  5. D.G. Morris and M.A. Munoz-Morris: Recent developments toward the application of iron aluminides in fossil fuel technologies. Adv. Eng. Mater. 13(1–2), 43 (2011).

    Article  CAS  Google Scholar 

  6. M. Palm, A. Schneider, F. Stein, and G. Sauthoff: Strengthening of iron aluminide alloys for high-temperature applications. In Integrative and Interdisciplinary Aspects of Intermetallics, M.J. Mills, H. Inui, H. Clemens, and C.L. Fu, ed.; Mater. Res. Soc. Symp. Proc., Vol. 842, Pittsburgh, PA, 2005; p. 3.

  7. D.G. Morris and M.A. Muñoz-Morris: Development of creep-resistant iron aluminides. Mater. Sci. Eng. A462, 45 (2007).

    Article  CAS  Google Scholar 

  8. M. Palm: Fe-Al materials for structural applications at high temperatures: Current research at MPIE. Int. J. Mater. Res. 100(3), 277 (2009).

    Article  CAS  Google Scholar 

  9. J.M. Guilemany, C.R.C. Lima, N. Cinca, and J.R. Miguel: Studies of Fe–40Al coatings obtained by high velocity oxy-fuel. Surf. Coat. Technol. 201(5), 2072 (2006).

    Article  CAS  Google Scholar 

  10. S.C. Wei, B.S. Xu, H.D. Wang, G. Jin, and H. Lv: Comparison on corrosion-resistance performance of electro-thermal explosion plasma spraying FeAl-based coatings. Surf. Coat. Technol. 201(9–11), 5294 (2007).

    Article  CAS  Google Scholar 

  11. G.J. Yang, H.T. Wang, C.J. Li, and C.X. Li: Effect of annealing on the microstructure and erosion performance of cold-sprayed FeAl intermetallic coatings. Surf. Coat. Technol. 205(23–24), 5502 (2011).

    Article  CAS  Google Scholar 

  12. B. Song, S. Dong, P. Coddet, H. Liao, and C. Coddet: Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts. Surf. Coat. Technol. 206(22), 4704 (2012).

    Article  CAS  Google Scholar 

  13. B. Song, S. Dong, H. Liao, and C. Coddet: Manufacture of Fe–Al cube part with a sandwich structure by selective laser melting directly from mechanically mixed Fe and Al powders. Int. J. Adv. Manuf. Technol. 69(5–8), 1323 (2013).

    Article  Google Scholar 

  14. B. Bax, M. Schäfer, C. Pauly, and F. Mücklich: Coating and prototyping of single-phase iron aluminide by laser cladding. Surf. Coat. Technol. 235, 773 (2013).

    Article  CAS  Google Scholar 

  15. T. Durejko, S. Lipinski, Z. Bojar, and J. Bystrzycki: Processing and characterization of graded metal/intermetallic materials: The example of Fe/FeAl intermetallics. Mater. Des. 32(5), 2827 (2011).

    Article  CAS  Google Scholar 

  16. I. Shishkovsky, F. Missemer, N. Kakovkina, and I. Smurov: Intermetallics synthesis in the Fe–Al system via layer by layer 3D laser cladding. Crystals 3(4), 517 (2013).

    Article  Google Scholar 

  17. M. Ziętala, T. Durejko, and J. Bystrzycki: Microstructural characterization of metal-intermetallic functionally graded materials fabricated by using laser engineered net shaping (LENS). In Intermetallics 2013, Banz, Germany, 30.09.–04.10. 2013, Abstract Booklet, 2013; p. 77.

  18. T. Durejko, M. Lazinska, and W. Przetakiewicz: Manufacturing of Fe3Al based materials using LENS method. Inz. Mater. 35(5), 353 (2012).

    Google Scholar 

  19. M. Kwiatkowska, M. Polanski, and J. Bystrzycki: Synthesis of intermetallics by using laser engineered net shaping. In Intermetallics 2013, Banz, Germany, 30.09.–04.10. 2013, Abstract Booklet, 2013; p. 78.

  20. D.G. Morris and M.A. Morris-Muñoz: The influence of microstructure on the ductility of iron aluminides. Intermetallics 7(10), 1121 (1999).

    Article  CAS  Google Scholar 

  21. F. Stein and M. Palm: Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. Int. J. Mater. Res. 98(7), 580 (2007).

    Article  CAS  Google Scholar 

  22. F. Stein, A. Schneider, and G. Frommeyer: Flow stress anomaly and order–disorder transitions in Fe3Al-based Fe–Al–Ti–X alloys with X = V, Cr, Nb, or Mo. Intermetallics 11(1), 71 (2003).

    Article  CAS  Google Scholar 

  23. D. Risanti, J. Deges, L. Falat, S. Kobayashi, J. Konrad, M. Palm, B. Pöter, A. Schneider, C. Stallybrass, and F. Stein: Dependence of the brittle-to-ductile transition temperature (BDTT) on the Al content of Fe-Al alloys. Intermetallics 13(12), 1337 (2005).

    Article  CAS  Google Scholar 

  24. T. Vilaro, V. Kottman-Rexerodt, M. Thomas, C. Colin, P. Bertrand, L. Thivillon, S. Abed, V. Ji, P. Aubry, P. Peyre, and T. Malot: Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes. Adv. Mater. Res. 89–91, 586 (2010).

    Article  Google Scholar 

  25. R.S. Sundar, T.R.G. Kutty, and D.H. Sastry: Hot hardness and indentation creep of Fe3Al-based alloys. Intermetallics 8(4), 427 (2000).

    Article  CAS  Google Scholar 

  26. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J-P. Kruth. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58, 3303 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Mr. G. Bialkowski for EDM preparation of the samples and for performing the compression tests, Mr. B. Breitbach for XRD analysis, Mrs. I. Wossack for EPMA, Mr. D. Kurz for wet chemical analysis and Dr. F. Stein for DTA analysis. Powders used for this work were supplied by NANOVAL GmbH & Co. KG. Financial support from the German Ministry of Education and Research (BMBF) under grants 03X3574E/F is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesa Rolink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolink, G., Vogt, S., Senčekova, L. et al. Laser metal deposition and selective laser melting of Fe–28 at.% Al. Journal of Materials Research 29, 2036–2043 (2014). https://doi.org/10.1557/jmr.2014.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.131

Navigation