Skip to main content
Log in

Effect of cooling profile on crystalline phases, oxidation state, and chemical partitioning of complex glasses

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Investigations of the crystallization of aluminosilicate phases within Hanford nuclear waste glasses typically involve subjecting samples to the canister centerline cooling (CCC) schedule. This cooling schedule is representative of the slowest cooling thermal profile which these glasses will experience after the glass is poured into the high level waste (HLW) container. However, few investigations have observed how the crystallization behavior changes by varying the heat treatment schedule. In the present study, three Hanford HLW glasses are subjected to CCC and isothermal heat treatments (IHT) to better understand the evolution of phases and the chemical partitioning due to temperature schedule. Samples were characterized using electron probe microanalysis, X-ray diffraction, micro X-ray fluorescence, and micro X-ray absorption spectroscopy. From IHT, eucryptite and apatite phases were observed which were not observed during CCC. Spatially-resolved measurements demonstrated that the oxidation state of the iron was similar among glass and crystal, and we suggest a mechanism to describe the compositional fluctuations near the crystal-glass interface which influence crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Kruger, Proc. for Waste Manag. Conf. (1), 1–15 (2013).

    Google Scholar 

  2. A. Goel, J. McCloy, R. Pokorny and A. A. Kruger, J. Non-Cryst. Solids X 4, 1–19 (2019).

    Google Scholar 

  3. J. Amoroso, SRNL-STI-2011-00546 (2011).

    Google Scholar 

  4. B. J. Riley, P. Hrma, J. Rosario and J. D. Vienna, Ceram. Trans. 132, 257–265 (2001).

    Google Scholar 

  5. J. S. McCloy, C. Rodriguez, C. Windisch, C. Leslie, M. J. Schweiger, B. R. Riley and J. D. Vienna, in Advances in Materials Science for Environmental and Nuclear Technology (John Wiley & Sons, Inc., 2010), pp. 63–76.

    Book  Google Scholar 

  6. C. M. Jantzen and D. E. Bickford, in Materials Research Society Proceedings (Pittsburgh, PA, USA, 1985), Vol. 44, pp. 11.

    Google Scholar 

  7. T. M. Besmann, K. E. Spear and E. C. Beahm, MR. Proc. 608 (2011).

  8. C. P. Rodriguez, J. McCloy, M. J. Schweiger, J. V. Crum and A. Winschell, Repor. No. PNNL-20184, 2011.

    Google Scholar 

  9. J. Marcial, J. McCloy and O. Neill, in Symposium on Scientific Basis for Nuclear Waste Management XX (Mater. Res. Soc. Symp. Proc., Boston, MA, USA, 2015).

    Google Scholar 

  10. J. Marcial, J. Crum, O. Neill and J. McCloy, Amer. Mineral. 101 (2), 266–276 (2016).

    Article  Google Scholar 

  11. P. Hrma, M. J. Schweiger, C. J. Humrickhouse, J. A. Moody, R. M. Tate, T. T. Rainsdon, N. E. TeGrotenhuis, B. M. Arrigoni, J. Marcial, C. P. Rodriguez and B. H. Tincher, Ceramics-Silikaty 54, 193–211 (2010).

    CAS  Google Scholar 

  12. H. Li, J. D. Vienna, P. Hrma, D. E. Smith and M. J. Schweiger, in Scientific Basis for Nuclear Waste Management XX (Mater. Res. Soc. Symp. Proc., Pittsburgh, PA, 1997), Vol. 465, pp. 261-268.

    Google Scholar 

  13. R. M. Tindwa, A. J. Perrotta, P. Jerus and A. Clearfield, Mat. Res. Bull. 17 (7), 873–881 (1982).

    Article  CAS  Google Scholar 

  14. V. Dondur, R. Dimitrijevic and N. Petranovic, J. Mater. Sci. 23 (11), 4081–4084 (1988).

    Article  CAS  Google Scholar 

  15. Z. Wang, J. Liu, Y. Zhou, J. Neeway, D. K. Schreiber, J. V. Crum, J. V. Ryan, X. L. Wang, F. Wang and Z. Zhu, Surf. Interface Anal. 48, 1392–1401 (2016).

    Article  CAS  Google Scholar 

  16. C. M. Jantzen and K. G. Brown, J. Amer. Ceram. Soc. 90 (6), 1880–1891 (2007).

    Article  CAS  Google Scholar 

  17. A. Billings and T. T. Edwards, SRNL-STI-2009-00025 (2009).

    Google Scholar 

  18. A. Billings and T. T. Edwards, SRNL-STI-2010-00373 (2010).

    Google Scholar 

  19. D. L. McClane, J. W. Amoroso, K. M. Fox and A. A. Kruger, J. Non-Cryst. Solids 505, 215–224 (2019).

    Article  CAS  Google Scholar 

  20. P. Norby, Zeolite. 10 (3), 193–199 (1990).

    Article  CAS  Google Scholar 

  21. D. B. Dingwell and D. Virgo, Geochim. Cosmochim. Acta 51 (1), 195–205 (1987).

    Article  CAS  Google Scholar 

  22. P. Hrma, J. Non-Cryst. Solids 356, 3019–3025 (2010).

    Article  CAS  Google Scholar 

  23. M. Hujova, R. Pokorny, J. Klouzek, S. M. Lee, J. J. Traverso, M. J. Schweiger, A. A. Kruger and P. Hrma, Int. J. Appl. Glass Sci. 9, 487–498 (2018).

    Article  CAS  Google Scholar 

  24. M. Ahmadzadeh, J. Marcial and J. McCloy, J. Geophys. Res. Solid Earth 122 (4), 2504–2524 (2017).

    Article  CAS  Google Scholar 

  25. K. S. Matlack, C. Viragh, W. Kot and I. L. Pegg, VSL-13R33430-1 (2015).

    Google Scholar 

  26. A. Deshkar, J. Marcial, S. A. Southern, L. Kobera, D. L. Bryce, J. S. McCloy and A. Goel, J. Am. Ceram. Soc. 100 (7), 2859–2878 (2017).

    Article  CAS  Google Scholar 

  27. H. Li, P. R. Hrma, J. D. Vienna, M. Qian, Y. Su and D. E. Smith, J. Non-Cryst. Solids 331 (1-3), 202–216 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marcial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcial, J., Neill, O.K., Newville, M. et al. Effect of cooling profile on crystalline phases, oxidation state, and chemical partitioning of complex glasses. MRS Advances 5, 569–579 (2020). https://doi.org/10.1557/adv.2020.89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.89

Navigation