Skip to main content

Advertisement

Log in

Sticky thermoelectric materials for flexible thermoelectric modules to capture low–temperature waste heat

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We examined a working hypothesis of sticky thermoelectric (TE) materials, which is inversely designed to mass-produce flexible TE sheets with lamination or roll-to-roll processes without electric conductive adhesives. Herein, we prepared p-type and n-type sticky TE materials via mixing antimony and bismuth powders with low-volatilizable organic solvents to achieve a low thermal conductivity. Since the sticky TE materials are additionally injected into punched polymer sheets to contact with the upper and bottom electrodes in the fabrication process, the sticky TE modules of ca. 2.4 mm in thickness maintained temperature differences of ca. 10°C and 40°C on a hot plate of 40 °C and 120°C under a natural-air cooling condition with a fin. In the single-cell resistance analysis, we found that 75~150-μm bismuth powder shows lower resistance than the smaller-sized one due to the fewer number of particle-particle interfaces in the electric pass between the upper and bottom electrodes. After adjusting the printed wiring pattern for the upper and bottom electrodes, we achieved 42 mV on a hot plate (120°C) with the 6 × 6 module having 212 Ω in the total resistance. In addition to the possibility of mass production at a reasonable cost, the sticky TE materials provide a low thermal conductivity for flexible TE modules to capture low-temperature waste heat under natural-air cooling conditions with fins for the purpose of energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Bell, Science, 321, 1457 (2008).

    Article  CAS  Google Scholar 

  2. J.-H. Bahk, H. Fang, K. Yazawa, S. Ali, J. Mater. Chem.C. 3, 10362 (2015).

    Article  CAS  Google Scholar 

  3. N. Toshima, Synth Met. 225, 3 (2017).

    Article  CAS  Google Scholar 

  4. I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Sci. Tech. Adv. Mater. 19, 836 (2018).

    Article  CAS  Google Scholar 

  5. T. Mori, S. Priya, MRS Bull. 43, 176 (2018).

    Article  Google Scholar 

  6. K. Nan, S. D. Kang, K. Li, K. J. Yu, F. Zhu, J. Wang, A. C. Dunn, C. Zhou, Z. Xie, M. T. Agne, H. Wang, H. Luan, Y. Zhang, Y. Huang, G. J. Snyder, J. A. Rogers, Science Adv. 4, eaau5849 (2018).

    Article  Google Scholar 

  7. T. Shindo, Y. Nakatani, T. Oishi, Toshiba Rev. 63, 7 (2008).

    Google Scholar 

  8. C. B. Vining, Nat. Mater. 8, 83 (2009).

    Article  CAS  Google Scholar 

  9. N. Satoh, M. Otsuka, T. Ohki, A. Ohi, Y. Sakurai, Y. Yamashita, T. Mori Sci. Tech. Adv. Mater. 19, 517 (2018).

    Article  CAS  Google Scholar 

  10. S. Iha, S. Akamine, Y. Yamada, Cem. Sci. Concr. Tech. 66, 645 (2012).

    Article  CAS  Google Scholar 

  11. Y. Takezawa, Hitachi Chem. Tech. Rep. 53, 5 (2009).

    Google Scholar 

  12. J. Wüsten, K. Potje-Kamloth J. Phys. D: Appl. Phys. 41, 135113 (2008).

    Article  Google Scholar 

  13. T. Kawamori, T. Masaki T. Ogawa, Hitachi Chem. Tech. Rep. 61, 23 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, N., Otsuka, M., Sakurai, Y. et al. Sticky thermoelectric materials for flexible thermoelectric modules to capture low–temperature waste heat. MRS Advances 5, 481–487 (2020). https://doi.org/10.1557/adv.2020.84

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.84

Navigation