Skip to main content
Log in

Nanoscale Self-Assembly Using Ion and Electron Beam Techniques: A Rapid Review

  • Snapshot Review
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Jalil; H. Chang; V. K. Bandari; P. Robaschik; J. Zhang; P. F. Siles; G. Li; D. Bürger; D. Grimm; X. Liu Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 2016, 28, 2971–2977.

    Article  CAS  Google Scholar 

  2. J. H. Cho; M. D. Keung; N. Verellen; L. Lagae; V. V. Moshchalkov; P. Van Dorpe; D. H. Gracias Nanoscale origami for 3D optics. Small 2011, 7, 1943–1948.

    Article  CAS  Google Scholar 

  3. L. Zhang; J. J. Abbott; L. Dong; K. E. Peyer; B. E. Kratochvil; H. Zhang; C. Bergeles; B. J. Nelson Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 2009, 9, 3663–3667.

    Article  CAS  Google Scholar 

  4. C. Dai; D. Joung; J. Cho Plasma triggered grain coalescence for self-assembly of 3D nanostructures. Nano-micro Lett. 2017, 9, 27.

    Article  Google Scholar 

  5. N. T. Eigenfeld; J. M. Gray; J. J. Brown; G. D. Skidmore; S. M. George; V. M. Bright Ultra-thin 3D Nano-Devices from Atomic Layer Deposition on Polyimide. Adv. Mater. 2014, 26, 3962–3967.

    Article  CAS  Google Scholar 

  6. K. Rykaczewski; O. J. Hildreth; C. P. Wong; A. G. Fedorov; J. H. J. Scott Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. Nano letters 2011, 11, 2369–2374.

    Article  CAS  Google Scholar 

  7. R. Songmuang; C. Deneke; O. Schmidt Rolled-up micro-and nanotubes from single-material thin films. Appl. Phys. Lett. 2006, 89, 223109.

    Article  Google Scholar 

  8. K. Chalapat; N. Chekurov; H. Jiang; J. Li; B. Parviz; G. Paraoanu Self-Organized Origami Structures via Ion-Induced Plastic Strain. Adv. Mater. 2013, 25, 91–95.

    Article  CAS  Google Scholar 

  9. Z. Jiang; J. He; S. A. Deshmukh; P. Kanjanaboos; G. Kamath; Y. Wang; S. K. Sankaranarayanan; J. Wang; H. M. Jaeger; X. Lin Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 2015, 14, 912–917.

    Article  CAS  Google Scholar 

  10. J. Liu; J. Xu; Y. Ni; F. Fan; C. Zhang; S. Yu A family of carbon-based nanocomposite tubular structures created by in situ electron beam irradiation. ACS Nano 2012, 6, 4500–4507.

    Article  CAS  Google Scholar 

  11. C. Dai; L. Li; D. Wratkowski; J. Cho Electron Irradiation Driven Nanohands for Sequential Origami. Nano Lett. 2020, 20, 4975–4984.

    Article  CAS  Google Scholar 

  12. C. Dai; J. Cho In situ monitored self-assembly of three-dimensional polyhedral nanostructures. Nano Lett. 2016, 16, 3655–3660.

    Article  CAS  Google Scholar 

  13. C. Dai; K. Agarwal; J. Cho Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS Nano 2018, 12, 10251–10261.

    Article  CAS  Google Scholar 

  14. O. Supekar; J. Brown; N. Eigenfeld; J. Gertsch; V. Bright Atomic layer deposition ultrathin film origami using focused ion beams. Nanotechnology 2016, 27, 49LT02.

    Article  CAS  Google Scholar 

  15. L. A. Giannuzzi; F. A. Stevie A review of focused ion beam milling techniques for TEM specimen preparation. Micron 1999, 30, 197–204.

    Article  Google Scholar 

  16. Y. M. Park; D. Ko; K. Yi; I. Petrov; Y. Kim Measurement and estimation of temperature rise in TEM sample during ion milling. Ultramicroscopy 2007, 107, 663–668.

    Article  CAS  Google Scholar 

  17. C. Wu; F. Li; C. Pao; D. J. Srolovitz Folding sheets with ion beams. Nano Lett. 2017, 17, 249–254.

    Article  CAS  Google Scholar 

  18. Y. Mao; Y. Zheng; C. Li; L. Guo; Y. Pan; R. Zhu; J. Xu; W. Zhang; W. Wu Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas. Adv. Mater. 2017, 29, 1606482.

    Article  Google Scholar 

  19. J. H. Cho; D. H. Gracias Self-assembly of lithographically patterned nanoparticles. Nano Lett. 2009, 9, 4049–4052.

    Article  CAS  Google Scholar 

  20. J. H. Cho; T. James; D. H. Gracias Curving nanostructures using extrinsic stress. Adv. Mater. 2010, 22, 2320–2324.

    Article  CAS  Google Scholar 

  21. J. H. Cho; A. Azam; D. H. Gracias Three dimensional nanofabrication using surface forces. Langmuir 2010, 26, 16534–16539.

    Article  CAS  Google Scholar 

  22. J. H. Cho; D. Datta; S. Y. Park; V. B. Shenoy; D. H. Gracias Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. Nano Lett. 2010, 10, 5098–5102.

    Article  CAS  Google Scholar 

  23. A. Seminara; B. Pokroy; S. H. Kang; M. P. Brenner; J. Aizenberg Mechanism of nanostructure movement under an electron beam and its application in patterning. Physical Review B 2011, 83, 235438.

    Article  Google Scholar 

  24. N. S. Rajput; F. Le Marrec; M. El Marssi; M. Jouiad Fabrication and manipulation of nanopillars using electron induced excitation. J. Appl. Phys. 2018, 124, 074301.

    Article  Google Scholar 

  25. T. Kim; H. E. Jeong; K. Y. Suh; H. H. Lee Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276–2281.

    Article  CAS  Google Scholar 

  26. M. Zharnikov; M. Grunze Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects. J. Vac. Sci. Technol. B 2002, 20, 1793–1807.

    Article  CAS  Google Scholar 

  27. R. Pan; Z. Li; Z. Liu; W. Zhu; L. Zhu; Y. Li; S. Chen; C. Gu; J. Li Rapid Bending Origami in Micro/Nanoscale toward a Versatile 3D Metasurface. Laser Photonics Rev. 2020, 14, 1900179.

    Article  CAS  Google Scholar 

  28. Y. Mao; Y. Pan; W. Zhang; R. Zhu; J. Xu; W. Wu Multi-direction-tunable three-dimensional meta-atoms for reversible switching between midwave and long-wave infrared regimes. Nano Lett. 2016, 16, 7025–7029.

    Article  CAS  Google Scholar 

  29. Z. Liu; Z. Liu; J. Li; W. Li; J. Li; C. Gu; Z. Li 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Sci. Rep. 2016, 6, 1–8.

    Article  Google Scholar 

  30. Z. Liu; S. Du; A. Cui; Z. Li; Y. Fan; S. Chen; W. Li; J. Li; C. Gu High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials. Adv. Mater. 2017, 29, 1606298.

    Article  Google Scholar 

  31. X. Tian; Z. Liu; H. Lin; B. Jia; Z. Li; J. Li Five-fold plasmonic Fano resonances with giant bisignate circular dichroism. Nanoscale 2018, 10, 16630–16637.

    Article  CAS  Google Scholar 

  32. S. Yang; Z. Liu; H. Yang; A. Jin; S. Zhang; J. Li; C. Gu Intrinsic Chirality and Multispectral Spin-Selective Transmission in Folded Eta-Shaped Metamaterials. Adv. Opt. Mater. 2020, 8, 1901448.

    Article  CAS  Google Scholar 

  33. Z. Liu; H. Du; J. Li; L. Lu; Z. Li; N. X. Fang Nano-kirigami with giant optical chirality. Sci. Adv. 2018, 4, eaat4436.

    Article  Google Scholar 

  34. Z. Liu; Y. Xu; C. Ji; S. Chen; X. Li; X. Zhang; Y. Yao; J. Li Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces. Adv. Mater. 2020, 32, 1907077.

    Article  CAS  Google Scholar 

  35. K. J. Si; D. Sikdar; Chen, Y.; F. Eftekhari; Z. Xu; Y. Tang; W. Xiong; P. Guo; S. Zhang; Y. Lu Giant plasmene nanosheets, nanoribbons, and origami. ACS Nano 2014, 8, 11086–11093.

    Article  CAS  Google Scholar 

  36. D. Joung; A. Nemilentsau; K. Agarwal; C. Dai; C. Liu; Q. Su; J. Li; T. Low; S. J. Koester; J. Cho Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement. Nano Lett. 2017, 17, 1987–1994.

    Article  CAS  Google Scholar 

  37. K. Agarwal; C. Dai; D. Joung; J. Cho Nano-Architecture Driven Plasmonic Field Enhancement in 3D Graphene Structures. ACS Nano 2018, 13, 1050–1059.

    Google Scholar 

  38. N. Papasimakis; V. Fedotov; V. Savinov; T. Raybould; N. Zheludev Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 2016, 15, 263–271.

    Article  CAS  Google Scholar 

  39. W. Xu; T. Li; Z. Qin; Q. Huang; H. Gao; K. Kang; J. Park; M.J. Buehler; J.B. Khurgin; D. H. Gracias Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett. 2019, 19, 7941–7949.

    Article  CAS  Google Scholar 

  40. J. S. Randhawa; M. D. Keung; P. Tyagi; D. H. Gracias Reversible actuation of microstructures by surface-chemical modification of thin-film bilayers. Adv. Mater. 2010, 22, 407–410.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Agarwal, K. & Cho, JH. Nanoscale Self-Assembly Using Ion and Electron Beam Techniques: A Rapid Review. MRS Advances 5, 3507–3520 (2020). https://doi.org/10.1557/adv.2020.349

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.349

Navigation