Skip to main content
Log in

Polyetheresterurethane Based Porous Scaffolds with Tailorable Architectures by Supercritical CO2 Foaming

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2 (scCO2) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100-800 μm along with a porosity in the range from (19 ± 3 to 61 ± 6)% and interconnectivity of up to 82%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO2 foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. W., Y. H. Qiao, Y. X. Chen, G. J. He and H. Lin, Polym Eng Sci 56 (9), 980–986 (2016).

    Article  Google Scholar 

  2. V. Dolomanova, V. Kumar, R. Pyrz, L. A. O. Madaleno, L. R. Jensen and J. C. M. Rauhe, Cell Polym 31 (3), 125–143 (2012).

    Article  CAS  Google Scholar 

  3. V. Dolomanova, V. Kumar, R. Pyrz, L. A. O. Madaleno, L. R. Jensen and J. C. M. Rauhe, Cell Polym 32 (1), 1–19 (2013).

    Article  CAS  Google Scholar 

  4. T. Ellingham, L. Duddleston and L. S. Turng, Polymer 117, 132–139 (2017).

    Article  CAS  Google Scholar 

  5. X. Q. Lan, W. T. Zhai and W. G. Zheng, Ind Eng Chem Res 52 (16), 5655–5665 (2013).

    Article  CAS  Google Scholar 

  6. X. X. Wang, V. Kumar and W. Li, Cell Polym 31 (1), 1–18 (2012).

    Article  Google Scholar 

  7. T. Weigel, G. Schinkel and A. Lendlein, Expert Rev Med Devic 3 (6), 835–851 (2006).

    Article  CAS  Google Scholar 

  8. K. Luetzow, F. Klein, T. Weigel, R. Apostel, A. Weiss and A. Lendlein, J Biomech 40, S80–S88 (2007).

    Article  Google Scholar 

  9. N. Goonoo, A. Bhaw-Luximon, G. L. Bowlin and D. Jhurry, Polym Int 62 (4), 523–533 (2013).

    Article  CAS  Google Scholar 

  10. M. Grunlan, D. W. Zhang, M. Hahn, J. Erndt-Marino and A. Jimenez-Vergara, Abstr Pap Am Chem S 252 (2016).

  11. J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Kostner, A. Weth, W. Baumgartner and R. Marksteiner, J Biomed Mater Res A 105 (3), 891–899 (2017).

    Article  CAS  Google Scholar 

  12. Y. H. Hu, S. R. Winn, I. Krajbich and J. O. Hollinger, J Biomed Mater Res A 64a (3), 583–590 (2003).

    Article  CAS  Google Scholar 

  13. N. Iwasaki, Y. Kasahara, S. Yamane, T. Igarashi, A. Minami and S. Nisimura, Polymers-Basel 3 (1), 100–113 (2011).

    Article  CAS  Google Scholar 

  14. A. Jaramillo-Botero, M. Blanco, Y. Y. Li, G. McGuinness and W. A. Goddard, J Comput Theor Nanos 7 (7), 1238–1256 (2010).

    Article  CAS  Google Scholar 

  15. G. Y. Ji, W. T. Zhai, D. P. Lin, Q. Ren, W. G. Zheng and D. W. Jung, Ind Eng Chem Res 52 (19), 6390–6398 (2013).

    Article  CAS  Google Scholar 

  16. G. Z. Jin, T. H. Kim, J. H. Kim, J. E. Won, S. Y. Yoo, S. J. Choi, J. K. Hyun and H. W. Kim, J Biomed Mater Res A 101 (5), 1283–1291 (2013).

    Article  Google Scholar 

  17. Y. M. Ju, K. Park, J. S. Son, J. J. Kim, J. W. Rhie and D. K. Han, J Biomed Mater Res B 85b (1), 252–260 (2008).

    Article  CAS  Google Scholar 

  18. H. Y. Mi, S. Palumbo, X. Jing, L. S. Turng, W. J. Li and X. F. Peng, J Biomed Mater Res B 102 (7), 1434–1444 (2014).

    Article  Google Scholar 

  19. A. V. Nawaby, A. A. Farah, X. Liao, W. J. Pietro and M. Day, Biomacromolecules 6 (5), 2458–2461 (2005).

    Article  CAS  Google Scholar 

  20. G. Pertici, F. Carinci, G. Carusi, D. Epistatus, T. Villa, F. Crivelli, F. Rossi and G. Perale, J Biol Reg Homeos Ag 29 (3), 136–148 (2015).

    CAS  Google Scholar 

  21. M. M. Rahman, M. Shahruzzaman, M. S. Islam, M. N. Khan and P. Haque, J Polym Eng 39 (2), 134–142 (2019).

    Article  CAS  Google Scholar 

  22. P. Ros-Tarraga, A. Murciano, P. Mazon, S. A. Gehrke and P. N. De Aza, Ceram Int 43 (8), 6548–6553 (2017).

    Article  CAS  Google Scholar 

  23. K. B. Ryan and D. J. Mooney, Tissue Eng Pt A 21, S108–S109 (2015).

    Google Scholar 

  24. A. Sadiasa, T. H. Nguyen and B. T. Lee, J Biomat Sci-Polym E 25 (2), 150–167 (2014).

    Article  CAS  Google Scholar 

  25. J. San Roman, M. Martin, L. Rojo, R. Rosales and S. Deb, Tissue Eng Pt A 21, S59–S59 (2015).

    Google Scholar 

  26. C. Gualandi, L. J. White, L. Chen, R. A. Gross, K. M. Shakesheff, S. M. Howdle and M. Scandola, Acta Biomaterialia 6 (1), 130–136 (2010).

    Article  CAS  Google Scholar 

  27. J. Albuerne, L. Marquez, A. J. Müller, J.-M. Raquez, P. Degée and P. Dubois, Macromolecular Chemistry and Physics 206 (9), 903–914 (2005).

    Article  CAS  Google Scholar 

  28. Y. Brito, M. A. Sabino, G. Ronca and A. J. Müller, Journal of Applied Polymer Science 110 (6), 3848–3858 (2008).

    Article  CAS  Google Scholar 

  29. I. A. Chaim, M. A. Sabino, M. Mendt, A. J. Müller and D. Ajami, Journal of Tissue Engineering and Regenerative Medicine 6 (4), 272–279 (2012).

    Article  CAS  Google Scholar 

  30. A. Lendlein and R. Langer, Science 296 (5573), 1673–1676 (2002).

    Article  Google Scholar 

  31. D. Rickert, M. O. Scheithauer, S. Coskun, S. Kelch, A. Lendlein and R. P. Franke, Clin Hemorheol Micro 36 (4), 301–311 (2007).

    CAS  Google Scholar 

  32. L. J. White, V. Hutter, H. Tai, S. M. Howdle and K. M. Shakesheff, Acta Biomaterialia 8 (1), 61–71 (2012).

    Article  CAS  Google Scholar 

  33. C. X. Chen, Q. Q. Liu, X. Xin, Y. X. Guan and S. J. Yao, J Supercrit Fluid 117, 279–288 (2016).

    Article  CAS  Google Scholar 

  34. M. Behl, U. Ridder, Y. Feng, S. Kelch and A. Lendlein, Soft Matter 5 (3), 676–684 (2009).

    Article  CAS  Google Scholar 

  35. B. Hiebl, R. Fuhrmann, F. Jung, K. Kratz, A. Lendlein and R. P. Franke, Clin Hemorheol Micro 45 (2-4), 117–122 (2010).

    CAS  Google Scholar 

  36. J. Cui, K. Kratz, B. Hiebl, F. Jung and A. Lendlein, Tissue Eng Pt A 17 (3-4), 563–563 (2011).

    Google Scholar 

  37. M. Karimi, M. Heuchel, T. Weigel, M. Schossig, D. Hofmann and A. Lendlein, J Supercrit Fluid 61, 175–190 (2012).

    Article  CAS  Google Scholar 

  38. S. K. Goel and E. J. Beckman, Polym Eng Sci 34 (14), 1137–1147 (1994).

    Article  CAS  Google Scholar 

  39. M. A. Fanovich and P. Jaeger, Mat Sci Eng C-Mater 32 (4), 961–968 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behl, M., Razzaq, M.Y., Mazurek-Budzyńska, M. et al. Polyetheresterurethane Based Porous Scaffolds with Tailorable Architectures by Supercritical CO2 Foaming. MRS Advances 5, 2317–2330 (2020). https://doi.org/10.1557/adv.2020.345

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.345

Navigation