Skip to main content

Advertisement

Log in

Large-Scale Synthesis of Nickel Sulfide for Electronic Device Applications

  • Published:
MRS Advances Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2021

This article has been updated

Abstract

Several techniques have been employed for large-scale synthesis of group 10 transition metal dichalcogenides (TMDCs) based on platinum and palladium for nano- and optoelectronic device applications. Nickel Sulphides (NixSy), belonging to group 10 TMDC family, have been widely explored in the field of energy storage devices such as batteries and supercapacitors, etc. and commonly synthesized through the solution process or hydrothermal methods. However, the high-quality thin film growth of NixSy for nanoelectronic applications remains a central challenge. Here, we report the chemical vapor deposition (CVD) growth of NiS2 thin film onto a two-inch SiO2/Si substrate, for the first time. Techniques such as X-ray photoelectron spectroscopy, X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, have been used to analyse the quality of this CVD grown NiS2 thin film. A high-quality crystalline thin film of thickness up to a few nanometres (~28 nm) of NiS2 has been analysed here. We also fabricated a field-effect device based on NiS2 thin film using interdigitated electrodes by optical lithography. The electrical performance of the fabricated device is characterized at room temperature. On applying the drain voltage from -2 to +2 V, the device shows drain current in the range of 10−9 A before annealing and in the range of 10−6 A after annealing. This, being comparable to that from devices based on MoS2 and other two-dimensional materials, projects CVD grown NiS2 as a good alternative material for nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, 2011, doi: 10.1038/nnano.2010.279.

    Article  CAS  Google Scholar 

  2. A. Splendiani {etet al.}, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4, pp. 1271–1275, 2010, doi: 10.1021/nl903868w.

    Article  CAS  Google Scholar 

  3. S.K. Mahatha, K.D. Patel, and K.S.R. Menon, “Electronic structure investigation of MoS 2 and MoSe 2 using angle-resolved photoemission spectroscopy and abinitio band structure studies,” J. Phys. Condens. Matter, vol. 24, no. 47, 2012, doi: 10.1088/0953-8984/24/47/475504.

    Google Scholar 

  4. W. Sik Hwang {etet al.}, “Transistors with chemically synthesized layered semiconductor WS 2 exhibiting 10 5 room temperature modulation and ambipolar behavior,” Appl. Phys. Lett., vol. 101, no. 1, 2012, doi: 10.1063/1.4732522.

    Google Scholar 

  5. P. Vogt {etet al.}, “Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon,” Phys. Rev. Lett., vol. 108, no. 15, pp. 1–5, 2012, doi: 10.1103/PhysRevLett.108.155501.

    Article  Google Scholar 

  6. A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today, vol. 15, no. 6, pp. 256–265, 2012, doi: 10.1016/S1369-7021(12)70116-5.

    Article  CAS  Google Scholar 

  7. Z. Ni {etet al.}, “Tunable bandgap in silicene and germanene,” Nano Lett., vol. 12, no. 1, pp. 113–118, 2012, doi: 10.1021/nl203065e.

    Article  CAS  Google Scholar 

  8. L. Song {etet al.}, “Anomalous insulator-metal transition in boron nitridegraphene hybrid atomic layers,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, no. 7, pp. 1–12, 2012, doi: 10.1103/PhysRevB.86.075429.

    Article  Google Scholar 

  9. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Mater. Today, vol. 20, no. 3, pp. 116–130, 2017, doi: 10.1016/j.mattod.2016.10.002.

    Article  CAS  Google Scholar 

  10. W. Bao, X. Cai, D. Kim, K. Sridhara, and M.S. Fuhrer, “High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,” Appl. Phys. Lett., vol. 102, no. 4, 2013, doi: 10.1063/1.4789365.

  11. G. Frey and S. Elani, “Optical-absorption spectra of inorganic fullerenelike W),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 57, no. 11, pp. 6666–6671, 1998, doi: 10.1103/PhysRevB.57.6666.

    Article  CAS  Google Scholar 

  12. M.R. Islam {etet al.}, “Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma,” Nanoscale, vol. 6, no. 17, pp. 10033–10039, 2014, doi: 10.1039/c4nr02142h.

    Article  CAS  Google Scholar 

  13. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, pp. 2–5, 2010, doi: 10.1103/PhysRevLett.105.136805.

    Article  Google Scholar 

  14. N. Choudhary, M.R. Islam, N. Kang, L. Tetard, Y. Jung, and S.I. Khondaker, “Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma,” J. Phys. Condens. Matter, vol. 28, no. 36, p. 364002, 2016, doi: 10.1088/0953-8984/28/36/364002.

    Article  Google Scholar 

  15. G.Z. Magda, J. Petõ, G. Dobrik, C. Hwang, L.P. Biró, and L. Tapasztó, “Exfoliation of large-area transition metal chalcogenide single layers,” Sci. Rep., vol. 5, pp. 3–7, 2015, doi: 10.1038/srep14714.

    Article  Google Scholar 

  16. X. Hong {etet al.}, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol., vol. 9, no. 9, pp. 682–686, 2014, doi: 10.1038/nnano.2014.167.

    Article  CAS  Google Scholar 

  17. Y. Nie {etet al.}, “Preparation of 3D spherical Ni/Al LDHs with significantly enhanced electrochemical performance as a superior cathode material for Ni/MH batteries,” Electrochim. Acta, vol. 289, pp. 333–341, 2018, doi: 10.1016/j.electacta.2018.09.043.

    Article  CAS  Google Scholar 

  18. Y. Shang {etet al.}, “The analysis and fabrication of a novel tin-nickel mixed salt electrolytic coloured processing and the performance of coloured films for Al-12.7Si-0.7Mg alloy in acidic and alkali corrosive environments,” Int. J. Precis. Eng. Manuf., vol. 18, no. 1, pp. 93–98, 2017, doi: 10.1007/s12541-017-0011-x.

    Article  Google Scholar 

  19. J. Zhang {etet al.}, “Facile Synthesis of a Nickel Sulfide (NiS) Hierarchical Flower for the Electrochemical Oxidation of H 2 O 2 and the Methanol Oxidation Reaction (MOR),” J. Electrochem. Soc., vol. 164, no. 4, pp. B92–B96, 2017, doi: 10.1149/2.0221704jes.

    Article  CAS  Google Scholar 

  20. L. Zhang, J.C. Yu, M. Mo, L. Wu, Q. Li, and K.W. Kwong, “A general solution-phase approach to oriented nanostructured films of metal chalcogenides on metal foils: The case of nickel sulfide,” J. Am. Chem. Soc., vol. 126, no. 26, pp. 8116–8117, 2004, doi: 10.1021/ja0484505.

    Article  CAS  Google Scholar 

  21. F. Cai, R. Sun, Y. Kang, H. Chen, M. Chen, and Q. Li, “One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors,” RSC Adv., vol. 5, no. 29, pp. 23073–23079, 2015, doi: 10.1039/c5ra02058a.

    Article  CAS  Google Scholar 

  22. T. Zhu, H. Bin Wu, Y. Wang, R. Xu, and X.W. Lou, “Formation of 1D hierarchical structures composed of Ni3S 2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production,” Adv. Energy Mater., vol. 2, no. 12, pp. 1497–1502, 2012, doi: 10.1002/aenm.201200269.

    Article  CAS  Google Scholar 

  23. J. Yang, X. Duan, Q. Qin, and W. Zheng, “Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors,” J. Mater. Chem. A, vol. 1, no. 27, pp. 7880–7884, 2013, doi: 10.1039/c3ta11167a.

    Article  CAS  Google Scholar 

  24. X. Yang {etet al.}, “Synthesis of nickel sulfides of different phases for counter electrodes in dye-sensitized solar cells by a solvothermal method with different solvents,” J. Mater. Res., vol. 29, no. 8, pp. 935–941, 2014, doi: 10.1557/jmr.2014.74.

    Article  CAS  Google Scholar 

  25. W. Zhao {etet al.}, “Oriented single-crystalline nickel sulfide nanorod arrays: ‘Two-in-one’ counter electrodes for dye-sensitized solar cells,” J. Mater. Chem. A, vol. 1, no. 2, pp. 194–198, 2013, doi: 10.1039/c2ta00416j.

    Article  CAS  Google Scholar 

  26. Y. Lu, X. Li, J. Liang, L. Hu, Y. Zhu, and Y. Qian, “A simple melting- diffusing-reacting strategy to fabricate S/NiS2-C for lithium-sulfur batteries,” Nanoscale, vol. 8, no. 40, pp. 17616–17622, 2016, doi: 10.1039/c6nr05626a.

    Article  CAS  Google Scholar 

  27. N. Jiang, Q. Tang, M. Sheng, B. You, D.E. Jiang, and Y. Sun, “Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles,” Catal. Sci. Technol., vol. 6, no. 4, pp. 1077–1084, 2016, doi: 10.1039/c5cy01111f.

    Article  CAS  Google Scholar 

  28. S.H. Yu and M. Yoshimura, “Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes,” Adv. Funct. Mater., vol. 12, no. 4, pp. 277–285, 2002, doi: 10.1002/1616- 3028(20020418)12:4<277::AID-ADFM277>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  29. G. Shen, D. Chen, K. Tang, C. An, Q. Yang, and Y. Qian, “Phase- controlled synthesis and characterization of nickel sulfides nanorods,” J. Solid State Chem., vol. 173, no. 1, pp. 227–231, 2003, doi: 10.1016/S0022-4596(03)00030-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaresh Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nidhi, Nautiyal, T. & Das, S. Large-Scale Synthesis of Nickel Sulfide for Electronic Device Applications. MRS Advances 5, 2727–2735 (2020). https://doi.org/10.1557/adv.2020.339

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.339

Navigation