Skip to main content
Log in

Self-aligned Copper Oxide Passivation Layer — A Study on the Reliability Effect

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The reliability of the plasma etched copper lines with the self-aligned copper oxide passivation layer has been studied with the electromigration stress method. The oxide passivation layer was prepared by plasma oxidation, which covers the entire exposed copper line to prevent the surface oxidation under the ambient condition. The void formation and growth process reflect the line broken mechanism. Voids formed from grain boundary depletion and grain thinning were monitored by optical microscopes. The line failure times with respect to line width and current density were measured. The addition of the oxide passivation layer shortened the lifetime due to the poor heat transfer and copper diffusion, which accelerated the formation and growth of the voids. The narrow line has a longer lifetime than the wide line because of the fewer grain boundaries for flux divergence to form voids. The copper oxide passivation layer was formed self-aligned to the copper line. It also gettered copper atoms diffused from the bulk copper film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Technology Roadmap for Semiconductors (NTRS), SIA, (1997).

  2. Y. Kuo, ECS Interface, 22 (1), 55–61 (2013).

    CAS  Google Scholar 

  3. J. Proost, T. Hirato, T. Furuhara, K. Maex and J.-P. Celis, J. Appl. Phys., 87 (6), 2792–2802 (2000).

    Article  CAS  Google Scholar 

  4. C. S. Hau-Riege, S. P. Hau-Riege and A. P. Marathe, J. Appl. Phys., 96 (10), 5792–5796 (2004).

    Article  CAS  Google Scholar 

  5. C. Yu, P. C. Fazan, V. K. Mathews and T. T. Doan, Appl. Phys. Lett., 61 (11), 1344–1346 (1992).

    Article  CAS  Google Scholar 

  6. M. Fayolle and F. Romagna, Microelectronic Eng., 37, 135–141 (1997).

    Article  Google Scholar 

  7. R. Chang, Y. Cao and C. J. Spanos, IEEE Trans. on Electron Dev., 51 (10), 1577–1583 (2004).

    Article  Google Scholar 

  8. P. M. Schaible, W. C. Metzger and J. P. Anderson, J. Vacuum Science and Technology, 15 (2), 334–337 (1978).

    Article  CAS  Google Scholar 

  9. D. A. Danner, M. Dalvie and D. W. Hess, J. Electrochem. Soc., 134 (3), 669–673 (1987).

    Article  CAS  Google Scholar 

  10. Y. Kuo and J.R. Crowe, J. Vacuum Science and Technology A, 8 (3), 1529–1532 (1990).

    Article  CAS  Google Scholar 

  11. P. E. Riley, J. Electrochem. Soc., 140 (5), 1518–1522 (1993).

    Article  CAS  Google Scholar 

  12. D. J. Cooperberg, V. Vahedi and R. A. Gottscho, J. Vacuum Science and Technology A, 20 (5), 1536–1556 (2002).

    Article  CAS  Google Scholar 

  13. C. Cardinaud, M.-C. Peignon and P.-Y. Tessier, Appl. Surface Sci., 164 (1–4), 72–83 (2000).

    Article  CAS  Google Scholar 

  14. H. Miyazaki, K. Takeda, N. Sakuma, S. Kondo, Y. Homma and K. Hinode., J. Vacuum Science and Technology B, 15 (2), 237–240 (1997).

    Article  CAS  Google Scholar 

  15. Y. Kuo and S. Lee, Japan J. of Appl. Phys., 39 (3A), L188 (2000).

    Article  CAS  Google Scholar 

  16. S. Lee and Y. Kuo, J. Electrochem. Soc., 148 (9), G524–G529 (2001).

    Article  CAS  Google Scholar 

  17. Y. Kuo and S. Lee, Appl. Phys. Lett., 78 (7), 1002–1004 (2001).

    Article  CAS  Google Scholar 

  18. Y. Kuo and S. Lee, Vacuum 74 (3–4), 473–477 (2004).

    Article  CAS  Google Scholar 

  19. Y. Kuo, Proc. 6th Intl. Conf. Reactive Plasmas & 23rd Symp. Plasma Processing, 29-30 (2006).

  20. J. Yang, Y. Ahn, J. Bang, W. Ryu, J. Kim, J. Kang, M. S. Yang, I. Kang and I. Cung, ECS Trans., 16 (9), 13 (2008).

    Article  CAS  Google Scholar 

  21. Y. Kuo, J. Q. Su, M. Li and T. Yuan, XXXIV International Conference on Phenomena in Ionized Gases (XXXIV ICPIG), 10th International Conference on Reactive Plasmas (ICRP-10), Abst. OR19AM-B02, Sapporo, Hokkaido, Japan, July 14-19 (2019).

  22. G. Liu and Y. Kuo, J. Electrochem. Soc., 156 (7), H579–H589 (2009).

    Article  CAS  Google Scholar 

  23. M. Li and Y. Kuo, ECS. Trans., 86 (8), 41–47 (2018).

    Article  CAS  Google Scholar 

  24. C. S. Hau-Riege, Microelectronics Reliability, 44 (2), 195–205 (2004).

    Article  CAS  Google Scholar 

  25. C. N. Hinshelwood, Proceedings of the Royal Society of London, Series A, 102 (716), 318–328 (1922).

    CAS  Google Scholar 

  26. P. Nath and K. L. Chopra, Thin Solid Films, 20 (1), 53–62 (1974).

    Article  Google Scholar 

  27. Y. S. Gong, C. Lee, and C. K. Yang, J. Appl. Phys., 77 (10), 5422–5425 (1995).

    Article  CAS  Google Scholar 

  28. K. Hinode, Y. Hanaoka, K. Takeda and S. Kondo, Japan J. of Appl. Phys., 40 (10B), L1097 (2001).

    Article  CAS  Google Scholar 

  29. M. Momcilovic, M. Trtica, J. Ciganovic, J. Savovic, J. Stasic and M. Kuzmanovic, Appl. Surface Science, 270, 486–494 (2013).

    Article  CAS  Google Scholar 

  30. M. Li, J. Q. Su and Y. Kuo, ECS. Trans., 89 (3), 87–92 (2019).

    Article  CAS  Google Scholar 

  31. J. Q. Su, M. Li and Y. Kuo, ECS. Trans., 90 (1), 65–72 (2019).

    Article  CAS  Google Scholar 

  32. M. Li, J. Q. Su and Y. Kuo, ECS. Trans., 92 (5), 9–16 (2019).

    Article  CAS  Google Scholar 

  33. J. Q. Su, M. Li, Y. Kuo and S. Hamaguchi, ECS. Trans., 92 (5), 39–46 (2019).

    Article  CAS  Google Scholar 

  34. Y. Kuo, J. Electrochem. Soc., 137 (6), 1907–1911 (1990).

    Article  CAS  Google Scholar 

  35. Y. Kuo and J. R. Crowe, J. Vacuum Science and Technology A, 8 (3), 1529–1532 (1990).

    Article  CAS  Google Scholar 

  36. C. Ryu, H. Lee, K.-W. Kwon, A. LS. Loke and S. S. Wong, Solid State Technology, 42 (4), 53–56 (1999).

    Google Scholar 

  37. J.-C. Chuang, S.-L. Tu and M.-C. Chen, Thin Solid Films, 346 (1–2), 299–306 (1999).

    Article  CAS  Google Scholar 

  38. S. Song, Y. Liu, D. Mao, H. Ling and M. Li, Thin Solid Films, 476 (1), 142–147 (2005).

    Article  CAS  Google Scholar 

  39. G. Liu and Y. Kuo, J. Electrochem. Soc., 154 (7), H653–H658 (2007).

    Article  CAS  Google Scholar 

  40. M. C. Kang, Y. J. Kim and J. J. Kim, Electrochemical and Solid-State Letters. 12 (9), H340–H343 (2009).

    Article  CAS  Google Scholar 

  41. C-K. Hu, L. Gignac, E. Liniger, B. Herbst, D. L. Rath, S. T. Chen, S. Kaldor, A. Simon and W.-T. Tseng, Appl. Phys. Lett., 83 (5), 869–871 (2003).

    Article  CAS  Google Scholar 

  42. T. Kodama, N. Takagi, S. Kawai, Y. Nasu, S. Yanagisawa and K. Asama, IEEE Electr. Device L., 3 (7), 187–189 (1982).

    Article  Google Scholar 

  43. T. Yachi and N. Yamauchi, IEEE T. Electron Dev., 29 (2), 243–247 (1982).

    Article  Google Scholar 

  44. C.-L. Fan, M.-C. Shang, B.-J. Li, Y.-Z. Lin, S.-J. Wang, W.-D. Lee and B.-R. Hung, Materials, 8 (4), 1704–1713 (2015).

    Article  CAS  Google Scholar 

  45. J. Q. Su and Y. Kuo, ECS Trans., 97 (3), 51–60 (2020).

    Article  CAS  Google Scholar 

  46. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia and G. V. Hartland, J. Mater. Chem., 18 (17), 1949–1960 (2008).

    Article  CAS  Google Scholar 

  47. R. Hu, K.-T. Yong, I. Roy, H. Ding, S. He and P. N. Prasad, J. Phys. Chem. C, 113 (7), 2676–2684 (2009).

    Article  CAS  Google Scholar 

  48. X. Bu, H. Chen, H. Gai, R. Yang and E. S. Yeung, Anal. Chem., 81 (17), 7507–7509 (2009).

    Article  CAS  Google Scholar 

  49. R. Mercatelli, G. Romano, F. Ratto, P. Matteini, S. Centi, F. Cialdai, M. Monici, R. Pini and F. Fusi, Appl. Phys. Lett., 99 (13), 131113 (2011).

    Article  CAS  Google Scholar 

  50. R. A. Erck, D. I. Potter and H. Wiedersich, J. Nucl. Mater., 80 (1), 120–125 (1979).

    Article  CAS  Google Scholar 

  51. K. M. O’Connor and R. P. Wool, J. Appl. Phys., 51 (10), 5075–5079 (1980).

    Article  Google Scholar 

  52. T. S. Lundstrom, B. R. Gebart and C. Y. Lundemo, J. Reinf. Plast. Comp., 12 (12), 1339–1349 (1993).

    Article  Google Scholar 

  53. V. A. Lubarda, M. S. Schneider, D. H. Kalantar, B. A. Remington and M. A. Meyers, Acta Materialia, 52 (6), 1397–1408 (2004).

    Article  CAS  Google Scholar 

  54. G. Liu, Process and reliability assessment of plasma-based copper etch process. Texas A&M University (2008).

  55. C.-K. Hu, L. Gignac and R. Rosenberg, Microelectronics Reliability, 46 (2–4), 213–231 (2006).

    Article  CAS  Google Scholar 

  56. G. Raghavan, C. Chiang, P. B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, M. Bohr and D. B. Fraser, Thin Solid Films, 262 (1–2), 168–176 (1995).

    Article  CAS  Google Scholar 

  57. K.-D. Lee, E. T. Ogawa, H. Matsuhashi, P. R. Justison, K.-S. Ko and P. S. Ho, Appl. Phys. Lett., 79 (20), 3236–3238 (2001).

    Article  CAS  Google Scholar 

  58. H.-D. Lee, J.-O. Kim and J.-W. Chung, Desalin. Water Treat., 53 (10), 2767–2773 (2015).

    Article  CAS  Google Scholar 

  59. J.-T. Chu, H.-W. Huang, C.-C. Kao, W.-D. Liang, F.-I. Lai, C.-F. Chu, H.-C. Kuo and S.-C. Wang, Jpn. J. Appl. Phys., 44 (4B), 2509–2511 (2005).

    Article  CAS  Google Scholar 

  60. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O’Mullane and K. Kalantar-Zadeh, J. Mater. Chem. C, 2(27), 5247–5270 (2014).

    Article  CAS  Google Scholar 

  61. M.-S. Liu, M. C.-C. Lin, I.-T. Huang and C.-C. Wang, Chem. Eng. Technol., 29 (1), 72–77 (2006).

    Article  CAS  Google Scholar 

  62. A. Subramaniyan and R. Ilangovan, Int. J. Nanosci. Nanotechnol., 11 (1), 59–62 (2015).

    Google Scholar 

  63. F. M. D’Heurle, Proceedings of the IEEE, 59 (10), 1409–1418 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J.Q., Kuo, Y. Self-aligned Copper Oxide Passivation Layer — A Study on the Reliability Effect. MRS Advances 5, 2827–2836 (2020). https://doi.org/10.1557/adv.2020.310

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.310

Navigation