Skip to main content
Log in

Accelerating Development of Materials for Industrial and High-Tech Applications with Data-Driven Analysis and Simulations

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We describe how the development of advanced materials via high-throughput experimentation at Intermolecular® is accelerated using guidance from modelling, machine learning (ML) and other data-driven approaches. Focusing on rapid development of materials for the semiconductor industry at a reasonable cost, we review the strengths and the limitations of data-driven methods. ML applied to the experimental data accelerates the development of record-breaking materials, but needs a supply of physically meaningful descriptors to succeed in a practical setting. Theoretical materials design greatly benefits from the external modelling ecosystems that have arisen over the last decade, enabling a rapid theoretical screening of materials, including additional material layers introduced to improve the performance of the material stack as a whole, “dopants” to stabilize a given phase of a polymorphic material, etc. We discuss the relative importance of different approaches, and note that the success rates for seemingly similar problems can be drastically different. We then discuss the methods that assist experimentation by providing better phase identification. Finally, we compare the strengths of different approaches, using as an example the problem of identifying regions of thermodynamic stability in multicomponent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Agrawal and A. Choudhary, APL Mater. 4 (5), 053208 (2016).

    Article  Google Scholar 

  2. J.-P. Correa-Baena, K. Hippalgaonkar, J van Duren, S. Jaffer, V. R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha and T. Buonassisi, Joule 2 (8), 1410–1420 (2018).

    Article  CAS  Google Scholar 

  3. A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M. J. Kramer, C. Long and I. Takeuchi, Sci. Rep. 4 (1) (2014).

  4. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer and M. Wuttig, Nat. Mater. 7 (12), 972–977 (2008).

    Article  CAS  Google Scholar 

  5. R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler and L. M. Ghiringhelli, Phys. Rev. Mater. 2 (8) (2018).

  6. K. Yim, Y. Yong, J. Lee, K. Lee, H.-H. Nahm, J. Yoo, C. Lee, C. Seong Hwang and S. Han, NPG Asia Mater. 7 (6), e190–e190 (2015).

    Article  CAS  Google Scholar 

  7. Shannon R. D., in Encyclopedia of Inorganic Chemistry (2006).

  8. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, APL Mater. 1 (1) (2013).

  9. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  10. D. Broberg, B. Medasani, N. E. R. Zimmermann, G. Yu, A. Canning, M. Haranczyk, M. Asta and G. Hautier, Comput. Phys. Commun. 226, 165–179 (2018).

    Article  CAS  Google Scholar 

  11. R. Batra, T. D. Huan, G. A. Rossetti and R. Ramprasad, Chem. Mater. 29 (21), 9102–9109 (2017).

    Article  CAS  Google Scholar 

  12. Khazana: A computational materials knowledge base. Available at: khazana.gatech.edu/module_search/search.php?m=2

  13. R. Materlik, C. Künneth, M. Falkowski, T. Mikolajick and A. Kersch, J. Appl. Phys. 123 (16) (2018).

  14. R. Materlik, C. Künneth and A. Kersch, J. Appl. Phys. 117 (13) (2015).

  15. H.Z. Fang and S.V. Barabash, presented at SISC 2018 (unpublished).

  16. H.Z. Fang and S.V. Barabash (unpublished).

  17. S. V. Barabash, J. Comput. Electron. 16 (4), 1227–1235 (2017).

    Article  CAS  Google Scholar 

  18. Q. Zeng, A. R. Oganov, A. O. Lyakhov, C. Xie, X. Zhang, J. Zhang, Q. Zhu, B. Wei, I. Grigorenko, L. Zhang and L. Cheng, Acta Cryst. C 70 (Pt 2), 76–84 (2014).

    Article  CAS  Google Scholar 

  19. T. D. Huan, V. Sharma, G. A. Rossetti and R. Ramprasad, Phys. Rev. B 90 (6) (2014).

  20. Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi, J. Iniguez, B. Dkhil and B. Noheda, Nat. Mater. 17 (12), 1095–1100 (2018).

    Article  CAS  Google Scholar 

  21. M. E. McBriarty, V. K. Narasimhan, S. L. Weeks, A. Pal, H. Fang, T. A. Petach, A. Mehta, R. C. Davis, S. V. Barabash and K. A. Littau, Phys. Status Solidi (B) (2019).

  22. S.V. Barabash and M.E. McBriarty (unpublished).

  23. L. M. Acuña, D. G. Lamas, R. O. Fuentes, I. O. Fábregas, M. C. A. Fantini, A. F. Craievich and R. J. Prado, J. Appl. Cryst. 43 (2), 227–236 (2010).

    Article  Google Scholar 

  24. J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad 26 (2), 273–312 (2002).

    Article  CAS  Google Scholar 

  25. Thermo-Calc Software TCHEA1 database version1.0.

  26. A. R. Miedema, P. F. de Châtel and F. R. de Boer, Physica B+C 100 (1), 1–28 (1980).

    Article  CAS  Google Scholar 

  27. A. van de Walle, Calphad 33 (2), 266–278 (2009).

    Article  Google Scholar 

  28. R. V. Chepulskii, S. V. Barabash and A. Zunger, Phys. Rev. B 85 (14) (2012).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabash, S.V. Accelerating Development of Materials for Industrial and High-Tech Applications with Data-Driven Analysis and Simulations. MRS Advances 5, 1497–1511 (2020). https://doi.org/10.1557/adv.2020.189

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.189

Navigation