Skip to main content
Log in

Small Angle Scattering Data Analysis Assisted by Machine Learning Methods

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Small angle scattering (SAS) is a widely used technique for characterizing structures of wide ranges of materials. For such wide ranges of applications of SAS, there exist a large number of ways to model the scattering data. While such analysis models are often available from various suites of SAS data analysis software packages, selecting the right model to start with poses a big challenge for beginners to SAS data analysis. Here, we present machine learning (ML) methods that can assist users by suggesting scattering models for data analysis. A series of one-dimensional scattering curves have been generated by using different models to train the algorithms. The performance of the ML method is studied for various types of ML algorithms, resolution of the dataset, and the number of the dataset. The degree of similarities among selected scattering models is presented in terms of the confusion matrix. The scattering model suggestions with prediction scores provide a list of scattering models that are likely to succeed. Therefore, if implemented with extensive libraries of scattering models, this method can speed up the data analysis workflow by reducing search spaces for appropriate scattering models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Breßler, J. Kohlbrecher, and A. F. Thünemann, J. Appl. Crystallogr. 48, 1587 (2015).

    Article  Google Scholar 

  2. J. Ilavsky, P. R. Jemian, and IUCr, J. Appl. Crystallogr. 42, 347 (2009).

    Article  CAS  Google Scholar 

  3. I. Bressler, B. R. Pauw, A. F. Thünemann, and IUCr, J. Appl. Crystallogr. 48, 962 (2015).

    Article  CAS  Google Scholar 

  4. B. R. Pauw, J. S. Pedersen, S. Tardif, M. Takata, B. B. Iversen, and IUCr, J. Appl. Crystallogr. 46, 365 (2013).

    Article  CAS  Google Scholar 

  5. S. Förster, L. Apostol, W. Bras, and IUCr, J. Appl. Crystallogr. 43, 639 (2010).

    Article  Google Scholar 

  6. E. Brookes, P. Vachette, M. Rocco, J. Pérez, and IUCr, J. Appl. Crystallogr. 49, 1827 (2016).

    Article  CAS  Google Scholar 

  7. S. S. Nielsen, K. N. Toft, D. Snakenborg, M. G. Jeppesen, J. K. Jacobsen, B. Vestergaard, J. P. Kutter, L. Arleth, and IUCr, J. Appl. Crystallogr. 42, 959 (2009).

    Article  CAS  Google Scholar 

  8. http://www.sasview.org/, (2019).

  9. K. He, X. Zhang, S. Ren, and J. Sun, IEEE Conf. Comput. Vis. Pattern Recognit. 770 (2016).

  10. B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. Mujica, A. Coates, and A. Y. Ng, (2015).

  11. D. Bahdanau, K. Cho, and Y. Bengio, (2014).

  12. K. Saito, M. Yano, H. Hino, T. Shoji, A. Asahara, H. Morita, C. Mitsumata, J. Kohlbrecher, and K. Ono, Sci. Rep. 9, 1526 (2019).

    Article  Google Scholar 

  13. M. H. Kiapour, K. Yager, A. C. Berg, and T. L. Berg, 2014 IEEE Winter Conf. Appl. Comput. Vision, WACV 2014933 (2014).

  14. B. Zhao, J. A. Greenberg, and S. Wolter, in Anom. Detect. Imaging with X-Rays III, edited by Ashok A., Neifeld M. A., Gehm M. E., and Greenberg J. A. (SPIE, 2018), p. 4.

  15. D. Franke, C. M. Jeffries, and D. I. Svergun, Biophys. J. 114, 2485 (2018).

    Article  CAS  Google Scholar 

  16. V. Botu and R. Ramprasad, Int. J. Quantum Chem. 115, 1074 (2015).

    Article  CAS  Google Scholar 

  17. Z. Li, J. R. Kermode, and A. De Vita, Phys. Rev. Lett. 114, 096405 (2015).

    Article  Google Scholar 

  18. V. L. Deringer, N. Bernstein, A. P. Bartók, M. J. Cliffe, R. N. Kerber, L. E. Marbella, C. P. Grey, S. R. Elliott, and G. Csányi, J. Phys. Chem. Lett. 9, 2879 (2018).

    Article  CAS  Google Scholar 

  19. K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Nature 559, 547 (2018).

    Article  CAS  Google Scholar 

  20. B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, Phys. Rev. B 89, 094104 (2014).

    Article  Google Scholar 

  21. Y. Liu, T. Zhao, W. Ju, and S. Shi, J. Mater. 3, 159 (2017).

    Google Scholar 

  22. Sasmodels, (2019).

  23. J. S. Pedersen, Adv. Colloid Interface Sci. 70, 171 (1997).

    Article  CAS  Google Scholar 

  24. L. A. Feigin, D. I. Svergun, and G. W. Taylor, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (n.d.).

  25. W.-R. Chen, P. D. Butler, and L. J. Magid, Langmuir 22, 6539 (2006).

    Article  CAS  Google Scholar 

  26. P. Lindner and T. Zemb, editors, Neutrons, X-Rays and Light: Scattering Methods Applied to Soft Condensed Matter (North-Holland, 2002).

  27. J. Lemmich, K. Mortensen, J. H. Ipsen, T. Honger, R. Bauer, and O. G. Mouritsen, Phys. Rev. E 53, 5169 (1996).

    Article  CAS  Google Scholar 

  28. G. Pabst, Biophys. Rev. Lett. 1, 57 (2006).

    Article  CAS  Google Scholar 

  29. S. Lee, (2019).

  30. C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, BMC Bioinformatics 9, 307 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwoo Do.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, C., Chen, WR. & Lee, S. Small Angle Scattering Data Analysis Assisted by Machine Learning Methods. MRS Advances 5, 1577–1584 (2020). https://doi.org/10.1557/adv.2020.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.130

Keywords

Navigation