Skip to main content

Advertisement

Log in

Confinement Effect in Thermoelectric Properties of Two–Dimensional Materials

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) materials, or materials that can generate an electrical energy from temperature gradient, are promising for renewable energy technology. One fundamental aspect in the TE research is the demand to maximize the TE power-factor, PF2=Sσ, by having as large Seebeck coefficient (S) and electrical conductivity (σ) as possible. In the early 90s, Hicks and Dresselhaus proposed the PF enhancement by using low-dimensional materials, in which electrons are confined in certain directions and they move freely in the other directions. This quantum effect is known as the confinement length (L) effect, in which L is the thickness or diameter of the two-dimensional (2D) or one-dimensional materials, respectively. However, a key challenge is to understand the critical value of L, at which the PF can be significantly enhanced. Recently, we reevaluated the confinement theory of the lowdimensional materials to solve this issue. We showed that electrons are fully confined only when L is smaller than an intrinsic length Λ, the so-called thermal de Broglie wavelength, which depends on the materials and can be experimentally measured. Monolayer 2D materials naturally satisfy the condition of L < Λ since their confinement length is ~ 1 nm, while their thermal de Broglie wavelength is ~ 5–10 nm. Therefore, they could be a good candidate for TE materials. In this review article, we first review the TE materials with low dimensions. Then, we show the basic concept of the confinement effect and the consequence of such an effect. Finally, based on this effect, we turn our attention to the progress achieved recently in the TE properties of the 2D materials such as monolayer InSe, GaN electron gas, and SrTiO3 superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, 2015 Internet Technologies and Applications (ITA), 2015, pp. 219–224.

    Book  Google Scholar 

  2. S. Hiremath, G. Yang, and K. Mankodiya, EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth 2014), 2014, pp. 304–307.

    Google Scholar 

  3. M. Haras and T. Skotnicki, Nano Energy 58, 461–476 (2018).

    Article  CAS  Google Scholar 

  4. F. Suarez, A. Nozariasbmarz, D. Vashaee, and M. C. Ozturk, Energy Environ. Sci. 9, 2099–2113 (2016).

    Article  CAS  Google Scholar 

  5. M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, Appl. Energy 182, 518–524 (2016).

    Article  Google Scholar 

  6. H. J. Goldsmid, Introduction to Thermoelectricity, (Springer-Verlag: Berlin/Heidelberg, Germany, 2010).

    Book  Google Scholar 

  7. F. J. DiSalvo, Sicence 285, 703–706 (1999).

    Article  CAS  Google Scholar 

  8. G. J. Snyder and E. S. Toberer, Nature Mat. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  9. K. Yazawa and A. Shakouri, Environ. Sci. Technol. 45, 7548–7553 (2011).

    CAS  Google Scholar 

  10. S. K. Yee, S. LeBlanc, K. E. Goodson, and C. Dames, Energy Environ. Sci. 6, 2561–2571 (2013).

    Article  Google Scholar 

  11. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554–557 (2008).

    Article  CAS  Google Scholar 

  12. M. Hong, Z. G. Chen, L. Yang, Y. C. Zou, M. S. Dargusch, H. Wang, and J. Zou, Adv. Mater. 30, 1705942 (2018).

    Article  CAS  Google Scholar 

  13. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631(R) (1993).

  14. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  15. N. T. Hung, E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, Phys. Rev. Lett. 117, 036602 (2016).

    Article  CAS  Google Scholar 

  16. N. T. Hung, A. R. T. Nugraha, and R. Saito, Mater. Today Proc. 4, 12368–12373 (2017).

    Article  Google Scholar 

  17. J. Zeng, X. He, S. J. Liang, E. Liu, Y. Sun, C. Pan, Y. Wang, T. Cao, X. Liu, C. Wang, et al., Nano Lett. 18, 7538–7545 (2018).

    Article  CAS  Google Scholar 

  18. H. J. Goldsmid and R. W. Douglas, Br. J. Appl. Phys. 5, 458 (1945).

    Article  Google Scholar 

  19. H. J. Goldsmid, J. Electronics 1, 218–222 (1955).

    CAS  Google Scholar 

  20. V. A. Johnson and K. L. Horovitz, Phys. Rev. 92, 226 (1953).

    CAS  Google Scholar 

  21. C. Kittel, Introduction of solid state physics, (John Wiley & Son, 1966).

    Google Scholar 

  22. C. B. Vining, Nat. Mater. 8, 83 (2009).

    CAS  Google Scholar 

  23. A. Majumdar, Science 303, 777 (2004).

    CAS  Google Scholar 

  24. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66–69 (2011).

    CAS  Google Scholar 

  25. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414–418 (2012).

    CAS  Google Scholar 

  26. A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, and P. F. P. Poudeu, Energy Environ. Sci. 10, 1668–1676 (2017).

    CAS  Google Scholar 

  27. L. D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature 508, 373–377 (2014).

    CAS  Google Scholar 

  28. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, et al., Science 348, 109–114 (2015).

    CAS  Google Scholar 

  29. N. T. Hung, A. R. T. Nugraha, and R. Saito, Energies 12, 4561 (2019).

    Article  CAS  Google Scholar 

  30. N. T. Hung, A. R. T. Nugraha, and R. Saito, Phys. Rev. Appl. 9, 024019 (2018).

    Article  CAS  Google Scholar 

  31. T. C. Harman, D. L. Spears, and M. J. Manfra, J. Electron. Mater. 25, 1121 (1996).

    Article  CAS  Google Scholar 

  32. X. Sun, S. B. Cronin, J. Liu, K. L. Wang, T. Koga, M. S. Dresselhaus, and G. Chen, Proc. Int. Conf. Thermoelectrics (IEEE, New York, 1999), pp. 652–655.

    Google Scholar 

  33. J. Kim, S. Lee, Y. M. Brovman, P. Kim, and W. Lee, Nanoscale 7, 5053 (2015).

    Article  CAS  Google Scholar 

  34. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  CAS  Google Scholar 

  35. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W. A. Goddard III, and J. R. Heath, Nature 451, 168 (2008).

    Article  CAS  Google Scholar 

  36. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 80, 1215 (2008).

    Article  CAS  Google Scholar 

  37. H. Ohta, S. W. Kim, S. Kaneki, A. Yamamoto, and T. Hashizume, Adv. Science 5, 1700696 (2018).

    Article  CAS  Google Scholar 

  38. Y. Zhang, B. Feng, H. Hayashi, C. P. Chang, Y. M. Sheu, I. Tanaka, Y. Ikuhara, and H. Ohta, Nat. Commun. 9, 2224 (2018).

    Article  CAS  Google Scholar 

  39. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  40. B. J. Dong, Z. H. Wang, N. T. Hung, A. R. Oganov, T. Yang, R. Saito, Z. D. Zhang, Phys. Rev. Mater. 3, 013405 (2019).

    CAS  Google Scholar 

  41. N. T. Hung, A. R. T. Nugraha, and R. Saito, Appl. Phys. Lett. 111, 092107 (2017).

    Google Scholar 

  42. N. T. Hung, A. R. T. Nugraha, T. Yang, Z. Zhang, and R. Saito, J. Appl. Phys. 125, 082502 (2019).

    Google Scholar 

  43. N. T. Hung, A. R. T. Nugraha, and R. Saito, Nano Energy 58, 743–749 (2019).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, N.T., Nugraha, A.R.T., Yang, T. et al. Confinement Effect in Thermoelectric Properties of Two–Dimensional Materials. MRS Advances 5, 469–479 (2020). https://doi.org/10.1557/adv.2020.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.128

Navigation