Skip to main content

Advertisement

Log in

Electrochemical study of Nickel Oxide (NiO) nanoparticles from cactus plant extract

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

P-type NiO powders with an average crystallite size of 16 nm as shown by x-ray diffraction analysis were produced via biosynthesis using cactus plant extract. SEM showed that the NiO powders consisted of particles with sizes in the 20-35 nm range. A cyclic voltammetric study of the NiO nanopowders showed a quasi-reversible redox processes with the NiO powder showing potential for pseudo capacitance. Through these findings the use of natural Cactus extracts is hereby shown to be a cost-effective and environmentally friendly alternative for preparing Nickel oxide nanosized powders that can be of use in a variety of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuppusamy P., et al., Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharmaceutical Journal, 2016. 24(4): p. 473–484.

    Article  Google Scholar 

  2. Mondal S., et al., Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids and Surfaces B: Biointerfaces, 2011. 82(2): p. 497–504.

    Article  CAS  Google Scholar 

  3. Siddique M.N., et al. Investigation of optical properties of nickel oxide nanostructures using photoluminescence and diffuse reflectance spectroscopy. in AIP Conference Proceedings. 2018. AIP Publishing.

    Google Scholar 

  4. Kelsall R.W., Hamley I.W., and Geoghegan M., Nanoscale science and technology. 2005: Wiley Online Library.

    Book  Google Scholar 

  5. Bashir A., et al., Biosynthesis of NiO nanoparticles for photodegradation of free cyanide solutions under ultraviolet light. Journal of Physics and Chemistry of Solids, 2019.

    Google Scholar 

  6. Sun C., Li H., and Chen L., Nanostructured ceria-based materials: synthesis, properties, and applications. Energy & Environmental Science, 2012. 5(9): p. 8475–8505.

    Article  CAS  Google Scholar 

  7. Ezhilarasi A.A., et al., Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry and Photobiology B: Biology, 2018. 180: p. 39–50.

    Article  Google Scholar 

  8. Kaviyarasu K., et al., Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceramics International, 2016. 42(7): p. 8385–8394.

    Article  CAS  Google Scholar 

  9. Gleiter H., Nanostructured materials: basic concepts and microstructure. Acta materialia, 2000. 48(1): p. 1–29.

    Article  CAS  Google Scholar 

  10. Zhang F.-b., Zhou Y.-k., and Li H.-l., Nanocrystalline NiO as an electrode material for electrochemical capacitor. Materials Chemistry and Physics, 2004. 83(2-3): p. 260–264.

    Article  CAS  Google Scholar 

  11. Bhatt M.D. and Lee J.Y., High capacity conversion anodes in Li-ion batteries: A review. International Journal of Hydrogen Energy, 2019. 44(21): p. 10852–10905.

    Article  CAS  Google Scholar 

  12. Arico A.S., et al., Nanostructured materials for advanced energy conversion and storage devices, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 148–159.

    Google Scholar 

  13. Yang H., et al., Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. Journal of alloys and compounds, 2008. 459(1-2): p. 98–102.

    Article  CAS  Google Scholar 

  14. Fardood S.T., Ramazani A., and Moradi S., A novel green synthesis of nickel oxide nanoparticles using Arabic gum. Chemistry Journal of Moldova, 2017. 12(1): p. 115-8.

    Article  CAS  Google Scholar 

  15. Beach E.R., et al., Solvothermal synthesis of crystalline nickel oxide nanoparticles. Materials Chemistry and Physics, 2009. 115(1): p. 371–377.

    Article  CAS  Google Scholar 

  16. Anandan b. and Rajendran V., Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Materials Science in Semiconductor Processing, 2011. 14(1): p. 43–47.

    Article  CAS  Google Scholar 

  17. Rahdar A., Aliahmad M., and Azizi Y., NiO nanoparticles: synthesis and characterization. 2015.

    Google Scholar 

  18. Xiang L., Deng X., and Jin Y., Experimental study on synthesis of NiO nano-particles. Scripta Materialia, 2002. 47(4): p. 219–224.

    Article  CAS  Google Scholar 

  19. Maiti S., Pramanik A., and Mahanty S., Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS applied materials & interfaces, 2014. 6(13): p. 10754–10762.

    Article  CAS  Google Scholar 

  20. Mayedwa N., et al., Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation. Applied Surface Science, 2018. 446: p. 266–272.

    Article  CAS  Google Scholar 

  21. Niu M., et al., Synthesis of nanoporous CuO/TiO2/Pd-NiO composite catalysts by chemical dealloying and their performance for methanol and ethanol electro-oxidation. Journal of Power Sources, 2017. 362: p. 10–19.

    Article  CAS  Google Scholar 

  22. Ahmad T., et al., Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sciences, 2006. 8(5): p. 425–430.

    Article  CAS  Google Scholar 

  23. Nwanya A.C., et al., Electrochromic and electrochemical supercapacitive properties of room temperature PVP capped Ni (OH) 2/NiO thin films. Electrochimica Acta, 2015. 171: p. 128–141.

    Article  CAS  Google Scholar 

  24. Zheng Y.-z., Ding H.-y., and Zhang M.-l., Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Materials Research Bulletin, 2009. 44(2): p. 403–407.

    Article  CAS  Google Scholar 

  25. Zheng Y.-Z. and Zhang M.-L., Preparation and electrochemical properties of nickel oxide by molten-salt synthesis. Materials Letters, 2007. 61(18): p. 3967–3969.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Nuru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebretinsae, H., Welegergs, G., Matinise, N. et al. Electrochemical study of Nickel Oxide (NiO) nanoparticles from cactus plant extract. MRS Advances 5, 1095–1102 (2020). https://doi.org/10.1557/adv.2020.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.118

Navigation