Skip to main content
Log in

Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: a US-UK collaborative program

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nuclear wastes generated from reprocessing of used nuclear fuel tend to contain a large fraction of rare earth (RE, e.g., Nd3+), transition (TM, e.g., Mo6+, Zr4+), alkali (A, e.g., Cs+), and alkaline earth cations (AE, e.g., Ba2+, Sr2+). Various strategies have been considered for immobilizing such waste streams, varying from nominally crystal-free glass to glass-ceramic to multi-phase ceramic waste forms. For glass and glass-ceramic waste forms, the added glass-forming system is generally alkali-alkaline earth-aluminoborosilicate (i.e., Na-Ca-Al-B-Si oxide). In a US-UK collaborative project, summarized here, we investigated the glass structure and crystallization dependence on compositional changes in simulated nuclear waste glasses and glass-ceramics. Compositions ranged in complexity from five — to — eight oxides. Specifically, the roles of Mo and rare earths are investigated, since a proposed glass-ceramic waste form contains crystalline phases such as powellite [(AE,A,RE)MoO4] and oxyapatite [(RE,AE,A)10Si6O26], and the precipitation of molybdenum phases is known to be affected by the rare earth concentration in the glass. Additionally, the effects of other chemical additions have been systematically investigated, including Zr, Ru, P, and Ti. A series of studies were also undertaken to ascertain the effect of the RE size on glass structure and on partitioning to crystal phases, investigating similarities and differences in glasses containing single RE oxides of Sc, Y, La, Ce, Nd, Sm, Er, Yb, or Lu. Finally, the effect of charge compensation was investigated by considering not only the commonly assessed peralkaline glass but also metaluminous and peraluminous compositions. Glass structure and crystallization studies were conducted by spectroscopic methods (i.e., Raman, X-ray absorption, nuclear magnetic resonance (NMR), optical absorption, photoluminescence, photoluminescence excitation, X-ray photoelectron spectroscopy), microscopy (i.e., scanning electron microscopy, transmission electron microscopy, electron probe microanalysis), scattering (i.e., X-ray and neutron diffraction, small angle measurements), and physical characterization (i.e., differential thermal analysis, liquidus, viscosity, density). This paper will give an overview of the research program and some example unpublished results on glass-ceramic crystallization kinetics, microstructure, and Raman spectra, as well as some examples of the effects of rare earths on the absorption, luminescence, and NMR spectra of starting glasses. The formal collaboration described here has resulted in the generation of a large number of results, some of which are still in the process of being published as separate studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.V. Crum, L. Turo, B. Riley, M. Tang and A. Kossoy, J. Am. Ceram. Soc. 95, 1297 (2012).

    Article  CAS  Google Scholar 

  2. J. Crum, V. Maio, J. McCloy, C. Scott, B. Riley, B. Benefiel, J. Vienna, K. Archibald, C. Rodriguez, V. Rutledge, Z. Zhu, J. Ryan and M. Olszta, J. Nucl. Mater. 444, 481 (2014).

    Article  CAS  Google Scholar 

  3. J.D. Vienna, J.V. Crum, G.J. Sevigny and G.L. Smith, Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass-Ceramics, Pacific Northwest National Laboratory, Richland, WA, PNNL-21714, FCRD-SWF-2012-000152 (2012).

  4. S. Tan, M.I. Ojovan, N.C. Hyatt and R.J. Hand, J. Nucl. Mater. 458, 335 (2015).

    Article  CAS  Google Scholar 

  5. Assessment of the State of the Art of HLW and ILW Processing Technologies for Fast Reactor Recycle Wastes, National Nuclear Laboratory NNL(13)12536 (2013).

  6. The UK’s Nuclear Future, Department for Business, Innovation and SkillsHM Government Industrial Strategy Report (2013).

  7. J.S. McCloy, B. Riley, J. Crum, J. Marcial, J. Reiser, K. Kruska, J. Peterson, D. Neuville, D. Patil, K. Barnsley and J.V. Hanna, (submitted).

  8. A. Brehault, D. Patil, H. Kamat, R.E. Youngman, L.M. Thirion, J.C. Mauro, C.L. Corkhill, J.S. McCloy and A. Goel, J. Phys. Chem. B 122, 1714 (2018).

    Article  CAS  Google Scholar 

  9. D.S. Patil, M. Konale, M. Gabel, O.K. Neill, J.V. Crum, A. Goel, M.C. Stennett, N.C. Hyatt and J.S. McCloy, J. Nucl. Mater. 510, 539 (2018).

    Article  CAS  Google Scholar 

  10. J. McCloy, J. Marcial, B. Riley, J. Neufeind, J. Crum and D. Patil, MRS Adv. (accepted).

  11. G. Calas, M. Le Grand, L. Galoisy and D. Ghaleb, J. Nucl. Mater. 322, 15 (2003).

    Article  CAS  Google Scholar 

  12. C. Martineau, V.K. Michaelis, S. Schuller and S. Kroeker, Chem. Mater. 22, 4896 (2010).

    Article  CAS  Google Scholar 

  13. N. Chouard, D. Caurant, O. Majérus, J.L. Dussossoy, S. Klimin, D. Pytalev, R. Baddour-Hadjean and J.P. Pereira-Ramos, J. Mater. Sci. 1 (2014).

  14. N. Chouard, D. Caurant, O. Majérus, J.L. Dussossoy, A. Ledieu, S. Peuget, R. Baddour-Hadjean and J.P. Pereira-Ramos, J. Non-Cryst. Solids 357, 2752 (2011).

    Article  CAS  Google Scholar 

  15. O. Majérus, D. Caurant, A. Quintas, J.-L. Dussossoy, I. Bardez and P. Loiseau, J. Non-Cryst. Solids 357, 2744 (2011).

    Article  Google Scholar 

  16. A. Quintas, D. Caurant, O. Majérus, P. Loiseau, T. Charpentier and J.-L. Dussossoy, J. Alloys Compd. 714, 47 (2017).

    Article  CAS  Google Scholar 

  17. D. Perret, I. Bardez-Giboire, J.L. Dussosoy, N. Bousquet and F. Baudet in JMP Discovery Summit, 2011, https://community.jmp.com/kvoqx44227/attachments/kvoqx44227/discovery, accessed 1 Dec 2018.

  18. N. Chouard, D. Caurant, O. Majérus, N. Guezi-Hasni, J.-L. Dussossoy, R. Baddour-Hadjean and J.-P. Pereira-Ramos, J. Alloys Compd. 671, 84 (2016).

    Article  CAS  Google Scholar 

  19. F. Farges, R. Siewert, G.E. Brown, A. Guesdon and G. Morin, Canad. Mineral. 44, 731 (2006).

    Article  CAS  Google Scholar 

  20. N.C. Hyatt, R.J. Short, R.J. Hand, W.E. Lee, F. Livens, J.M. Charnock and R.L. Bilsborrow, In Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries X, edited, (John Wiley & Sons, Inc., 2006), pp. 179.

  21. D.A. McKeown, H. Gan and I.L. Pegg, J. Nucl. Mater. 488, 143 (2017).

    Article  CAS  Google Scholar 

  22. C.W. Ponader and G.E. Brown, Geochim. Cosmochim. Acta 53, 2893 (1989).

    Article  CAS  Google Scholar 

  23. H. Trégouët, D. Caurant, O. Majérus, T. Charpentier, L. Cormier and D. Pytalev, Procedia Mater. Sci. 7, 131 (2014).

    Article  Google Scholar 

  24. I. Bardez, D. Caurant, P. Loiseau, N. Baffier, J.L. Dussossoy, C. Gervais, F. Ribot and D.R. Neuville, Phys. Chem. Glasses 46, 320 (2005).

    CAS  Google Scholar 

  25. A. Quintas, D. Caurant, O. Majérus, T. Charpentier and J.L. Dussossoy, Mat. Res. Bull. 44, 1895 (2009).

    Article  CAS  Google Scholar 

  26. E. Nicoleau, F. Angeli, S. Schuller, T. Charpentier, P. Jollivet and M. Moskura, J. Non-Cryst. Solids 438, 37 (2016).

    Article  CAS  Google Scholar 

  27. S. Kroeker, S. Schuller, J.E.C. Wren, B.J. Greer and A. Mesbah, J. Am. Ceram. Soc. 99, 1557 (2016).

    Article  CAS  Google Scholar 

  28. M. Magnin, S. Schuller, C. Mercier, J. Trébosc, D. Caurant, O. Majérus, F. Angéli and T. Charpentier, J. Am. Ceram. Soc. 94, 4274 (2011).

    Article  CAS  Google Scholar 

  29. D. Caurant, O. Majérus, E. Fadel, A. Quintas, C. Gervais, T. Charpentier and D. Neuville, J. Nucl. Mater. 396, 94 (2010).

    Article  CAS  Google Scholar 

  30. S. Kroeker, C.S. Higman, V.K. Michaelis, N.B. Svenda and S. Schuller, Mater. Res. Soc. Symp. Proc. 1265, (2010).

  31. F. Angeli, O. Villain, S. Schuller, S. Ispas and T. Charpentier, Geochim. Cosmochim. Acta 75, 2453 (2011).

    Article  CAS  Google Scholar 

  32. K.P. Belov, A.M. Kadmtseva and R.Z. Levitin, Sov. Phys. JETP 20, 291 (1965).

    Google Scholar 

  33. X. Bohigas, J. Lluma, J. Tejada, L.L. Vistin, N.I. Sorokin and B.P. Sobolev, Bull. Soc. Cat. Cien. 13, 273 (1992).

    Google Scholar 

  34. R.D. Shannon, Acta Crystallog. A 32, 751 (1976).

    Article  Google Scholar 

  35. E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Le Gac, M. Fournier, A. Mesbah and F. Vasconcelos, J. Non-Cryst. Solids 427, 120 (2015).

    Article  CAS  Google Scholar 

  36. M.J. Dejneka, A. Streltsov, S. Pal, A.G. Frutos, C.L. Powell, K. Yost, P.K. Yuen, U. Müller and J. Lahiri, Proc. Natl. Acad. Sci. U. S. A. 100, 389 (2003).

    Article  CAS  Google Scholar 

  37. D. Caurant, Opt. Spectrosc. 116, 667 (2014).

    Article  CAS  Google Scholar 

  38. I. Bardez, D. Caurant, J.L. Dussosoy, P. Loiseau, C. Gervais, F. Ribot, D. Neuville, N. Baffier and C. Fillet, Nucl. Sci. Eng. 153, 272 (2006).

    Article  CAS  Google Scholar 

  39. A. Kidari, J.-L. Dussossoy, E. Brackx, D. Caurant, M. Magnin and I. Bardez-Giboire, J. Am. Ceram. Soc. 95, 2537 (2012).

    Article  CAS  Google Scholar 

  40. A. Winterstein-Beckmann, D. Möncke, D. Palles, E.I. Kamitsos and L. Wondraczek, J. Phys. Chem. B 119, 3259 (2015).

    Article  CAS  Google Scholar 

  41. H. Ohashi, M.D. Alba, A.I. Becerro, P. Chain and A. Escudero, J. Phys. Chem. Solids 68, 464 (2007).

    Article  CAS  Google Scholar 

  42. F. Soetebier and W. Urland, Z. Kristallogr. — New Cryst. Struct. 217, 22 (2002).

    CAS  Google Scholar 

  43. E.E. Foord, S.D. Birmingham, F. Demartin, T. Pilati, C.M. Gramaccioli and F.E. Lichte, Canad. Mineral. 31, 337 (1993).

    Article  CAS  Google Scholar 

  44. M. Qian, L. Li, H. Li and D.M. Strachan, J. Non-Cryst. Solids 333, 1 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCloy, J.S., Marcial, J., Patil, D. et al. Glass structure and crystallization in boro-alumino-silicate glasses containing rare earth and transition metal cations: a US-UK collaborative program. MRS Advances 4, 1029–1043 (2019). https://doi.org/10.1557/adv.2019.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.99

Navigation