Skip to main content
Log in

Phenomenological model for the reaction order n in the kinetics of curing an elastomer EPDM

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The precise control of curing reaction parameters allows a better crosslinking polymer. Modelling and optimization of this process require a correct kinetic of curing model. The kinetics of the crosslinking reaction is studied for the ethylene propylene diene monomer (EPDM) synthetic elastomer by mobile die rheometer (MDR). The kinetic parameters of reaction were calculated from Kamal-Ryan, Sestak-Berggren, and the Isayev-Deng methods at different temperatures. An Arrhenius-type function for the order of reaction n is introduced to improve the adjusting. Finally, a graphical and analytical description of the cure kinetics was developed. The order of reaction is predicted to better establishment of processing time. It was noted that for EPDM at higher temperatures, the increase of the rate of reaction occurs in short period of time, which could cause premature curing if the supply system is inadequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pantani, “Validation of a model to predict birefringence in injection molding,” European Polymer Journal, vol. 41, no. 7, pp. 1484–1492, 2005/07/01/2005.

    Article  CAS  Google Scholar 

  2. M. A. López-Manchado, M. Arroyo, B. Herrero, and J. Biagiotti, “Vulcanization kinetics of natural rubber-organoclay nanocomposites,” Journal of Applied Polymer Science, vol. 89, no. 1, pp. 1–15, 2003.

    Article  CAS  Google Scholar 

  3. N. C. Restrepo-Zapata, B. Eagleburger, T. Saari, T. A. Osswald, and J. P. Hernández-Ortiz, “Chemorheological time-temperature-transformation-viscosity diagram: Foamed EPDM rubber compound,” Journal of Applied Polymer Science, vol. 133, no. 38, pp. n/a–n/a, 2016.

    Article  CAS  Google Scholar 

  4. I.-K. Hong and S. Lee, “Cure kinetics and modeling the reaction of silicone rubber,” Journal of Industrial and Engineering Chemistry, vol. 19, no. 1, pp. 42–47, 2013.

    Article  CAS  Google Scholar 

  5. M. A. Kader and C. Nah, “Influence of clay on the vulcanization kinetics of fluoroelastomer nanocomposites,” Polymer, vol. 45, no. 7, pp. 2237–2247, 2004.

    Article  CAS  Google Scholar 

  6. G. Milani and F. Milani, “A new simple numerical model based on experimental scorch curve data fitting for the interpretation of sulphur vulcanization,” Journal of Mathematical Chemistry, Article vol. 48, no. 3, pp. 530–557, 2010.

    Article  CAS  Google Scholar 

  7. G. Milani and F. Milani, “EPDM accelerated sulfur vulcanization: a kinetic model based on a genetic algorithm,” Journal of mathematical chemistry, vol. 49, no. 7, pp. 1357–1383, 2011.

    Article  CAS  Google Scholar 

  8. G. Milani and F. Milani, “COMPREHENSIVE NUMERICAL MODEL FOR THE INTERPRETATION OF CROSS-LINKING WITH PEROXIDES AND SULFUR: CHEMICAL MECHANISMS AND OPTIMAL VULCANIZATION OF REAL ITEMS,” Rubber Chemistry and Technology, vol. 85, no. 4, pp. 590–628, 2012.

    Article  CAS  Google Scholar 

  9. G. Milani and F. Milani, “Kinetic finite element model to optimize sulfur vulcanization: Application to extruded epdm weather-strips,” Polymer Engineering & Science, vol. 53, no. 2, pp. 353–369, 2013.

    Article  CAS  Google Scholar 

  10. X. Sun and A. I. Isayev, “Cure Kinetics Study of Unfilled and Carbon Black Filled Synthetic Isoprene Rubber,” Rubber Chemistry and Technology, vol. 82, no. 2, pp. 149–169, 2009.

    Article  CAS  Google Scholar 

  11. J. Šesták and J. Kratochvíl, “Rational approach to thermodynamic rrocesses and constitutive equations in isothermal and non-isothermal kinetics,” Journal of Thermal Analysis and Calorimetry, vol. 5, no. 2–3, pp. 193–201, 1973.

    Google Scholar 

  12. X. Huang and B. Patham, “Experimental characterization of a curing thermoset epoxy-anhydride system—Isothermal and nonisothermal cure kinetics,” Journal of Applied Polymer Science, vol. 127, no. 3, pp. 1959–1966, 2013.

    Article  CAS  Google Scholar 

  13. B. Janković, “The kinetic analysis of isothermal curing reaction of an unsaturated polyester resin: Estimation of the density distribution function of the apparent activation energy,” Chemical Engineering Journal, vol. 162, no. 1, pp. 331–340, 2010/08/01/2010.

    Article  CAS  Google Scholar 

  14. M.-R. Erfanian, M. Anbarsooz, and M. Moghiman, “A three dimensional simulation of a rubber curing process considering variable order of reaction,” Applied Mathematical Modelling, vol. 40, no. 19, pp. 8592–8604, 2016/10/01/2016.

    Article  Google Scholar 

  15. A. Arrillaga, A. M. Zaldua, R. M. Atxurra, and A. S. Farid, “Techniques used for determining cure kinetics of rubber compounds,” European Polymer Journal, vol. 43, no. 11, pp. 4783–4799, 2007.

    Article  CAS  Google Scholar 

  16. T. Khang and Z. Ariff, “Vulcanization kinetics study of natural rubber compounds having different formulation variables,” Journal of Thermal Analysis & Calorimetry, Article vol. 109, no. 3, pp. 1545–1553, 2012.

    Article  CAS  Google Scholar 

  17. M. R. Keenan, “Autocatalytic cure kinetics from DSC measurements: Zero initial cure rate,” Journal of Applied Polymer Science, vol. 33, no. 5, pp. 1725–1734, 1987.

    Article  CAS  Google Scholar 

  18. L. M. Lopez, A. B. Cosgrove, J. P. Hernandez-Ortiz, and T. A. Osswald, “Modeling the vulcanization reaction of silicone rubber,” Polymer Engineering & Science, vol. 47, no. 5, pp. 675–683, 2007.

    Article  CAS  Google Scholar 

  19. M. Rafei, M. H. R. Ghoreishy, and G. Naderi, “Development of an advanced computer simulation technique for the modeling of rubber curing process,” Computational Materials Science, vol. 47, no. 2, pp. 539–547, 2009/12/01/2009.

    Article  CAS  Google Scholar 

  20. O. H. Yeoh, “MATHEMATICAL MODELING OF VULCANIZATION CHARACTERISTICS,” Rubber Chemistry and Technology, vol. 85, no. 3, pp. 482–492, 2012.

    Article  CAS  Google Scholar 

  21. M. R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Engineering & Science, vol. 13, no. 1, pp. 59–64, 1973.

    Article  CAS  Google Scholar 

  22. C. Albano, M. Hernández, M. N. Ichazo, J. González, and W. DeSousa, “Characterization of NBR/bentonite composites: vulcanization kinetics and rheometric and mechanical properties,” Polymer Bulletin, journal article vol. 67, no. 4, pp. 653–667, August 01 2011.

    Article  CAS  Google Scholar 

  23. M. H. R. Ghoreishy, M. Rafei, and G. Naderi, “OPTIMIZATION OF THE VULCANIZATION PROCESS OF A THICK RUBBER ARTICLE USING AN ADVANCED COMPUTER SIMULATION TECHNIQUE,” Rubber Chemistry and Technology, vol. 85, no. 4, pp. 576–589, 2012.

    Article  CAS  Google Scholar 

  24. W. I. Lee, A. C. Loos, and G. S. Springer, “Heat of Reaction, Degree of Cure, and Viscosity of Hercules 3501–6 Resin,” Journal of Composite Materials, vol. 16, no. 6, pp. 510–520, 1982.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Jimenez, S., Becerra-Ferreiro, A.M., Jareño-Betancourt, E. et al. Phenomenological model for the reaction order n in the kinetics of curing an elastomer EPDM. MRS Advances 4, 3299–3310 (2019). https://doi.org/10.1557/adv.2019.428

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.428

Navigation