Skip to main content
Log in

In Situ Testing Using Synchrotron Radiation Computed Tomography in Materials Research

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

High resolution (< 1 µm) computed tomography is an attractive tool in materials research due to its ability to non-destructively visualize the three-dimensional internal microstructures of the material. Recently, this technique has been further empowered by adding a fourth (temporal) dimension to study the time-lapse material response under load. Such studies are referred to as four-dimensional or in situ testing. In this snapshot review, we highlight three representative examples of in situ testing using synchrotron radiation computed tomography (SRCT) for composites failure analysis, measurement of local corrosion rate in alloys, and visualization and quantification of electrochemical reactions in lithium-ion batteries, as well as forward-looking integration of machine learning with in situ CT. Lastly, the future opportunities and challenges of in situ SRCT testing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Wu, T. Q. Xiao, and P. J. Withers, “The imaging of failure in structural materials by synchrotron radiation X-ray microtomography,” Eng. Fract. Mech., 2017.

  2. S. M. Bak, Z. Shadike, R. Lin, X. Yu, and X. Q. Yang, “In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research,” NPG Asia Mater., vol. 10, no. 7, pp. 563–580, 2018.

    Google Scholar 

  3. S. S. Singh, J. J. Williams, P. Hruby, X. Xiao, F. De Carlo, and N. Chawla, “In situ experimental techniques to study the mechanical behavior of materials using X-ray synchrotron tomography,” Integr. Mater. Manuf. Innov., vol. 3, no. 1, pp. 109–122, Dec. 2014.

    Google Scholar 

  4. S. M. Spearing and I. Sinclair, “The Micro-mechanics of Strength, Durability and Damage Tolerance in Composites: New Insights from High Resolution Computed Tomography,” IOP Conf. Ser. Mater. Sci. Eng., vol. 139, no. 1, p. 012007, Jul. 2016.

    Google Scholar 

  5. S. P. Knight, M. Salagaras, A. M. Wythe, F. De Carlo, A. J. Davenport, and A. R. Trueman, “In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys,” Corros. Sci., vol. 52, no. 12, pp. 3855–3860, 2010.

    CAS  Google Scholar 

  6. A. J. Clarke et al. “X-ray Imaging and Controlled Solidification of Al-Cu Alloys Toward Microstructures by Design,” Adv. Eng. Mater., vol. 17, no. 4, pp. 454–459, Apr. 2015.

    CAS  Google Scholar 

  7. J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances, 3rd Editio. SPIE.

  8. U. Bonse and F. Busch, “X-ray computed microtomography (μ CT) using synchrotron radiation (SR),” Prog. Biophys. Mol. Biol., vol. 65, no. 1–2, pp. 133–169, Jan. 1996.

    CAS  Google Scholar 

  9. B. M. Patterson, N. L. Cordes, K. Henderson, X. Xiao, and N. Chawla, “Data Challenges of In Situ X-Ray Tomography for Materials Discovery and Characterization,” in Materials Discovery and Design: By Means of Data Science and Optimal Learning, T. Lookman, S. Eidenbenz, F. Alexander, and C. Barnes, Eds. Cham: Springer International Publishing, 2018, pp. 129–165.

    Google Scholar 

  10. S. C. Garcea, I. Sinclair, and S. M. Spearing, “In situ synchrotron tomographic evaluation of the effect of toughening strategies on fatigue micromechanisms in carbon fibre reinforced polymers,” Compos. Sci. Technol., vol. 109, pp. 32–39, Mar. 2015.

    CAS  Google Scholar 

  11. B. M. Patterson et al., “In situ X-ray synchrotron tomographic imaging during the compression of hyper-elastic polymeric materials,” J. Mater. Sci., vol. 51, no. 1, pp. 171–187, Jan. 2016.

    Article  CAS  Google Scholar 

  12. N. C. Chapman, J. Silva, J. J. Williams, N. Chawla, and X. Xiao, “Characterisation of thermal cycling induced cavitation in particle reinforced met al matrix composites by three-dimensional (3D) X-ray synchrotron tomography,” Mater. Sci. Technol., vol. 31, no. 5, pp. 573–578, Mar. 2015.

    Article  CAS  Google Scholar 

  13. A. Haboub et al., “Tensile testing of materials at high temperatures above 1700 °C with in situ synchrotron X-ray micro-tomography,” Rev. Sci. Instrum., vol. 85, no. 8, p. 083702, Aug. 2014.

    Article  Google Scholar 

  14. S. S. Singh, J. J. Williams, M. F. Lin, X. Xiao, F. De Carlo, and N. Chawla, “In Situ Investigation of High Humidity Stress Corrosion Cracking of 7075 Aluminum Alloy by Three-Dimensional (3D) X-ray Synchrotron Tomography,” Mater. Res. Lett., vol. 2, no. 4, pp. 217–220, Oct. 2014.

    Article  Google Scholar 

  15. F. Eckermann et al., “In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography,” Corros. Sci., vol. 50, no. 12, pp. 3455–3466, Dec. 2008.

    Article  CAS  Google Scholar 

  16. B. J. Connolly et al., “X-ray microtomography studies of localised corrosion and transitions to stress corrosion cracking,” Mater. Sci. Technol., vol. 22, no. 9, pp. 1076–1085, Sep. 2006.

    Article  CAS  Google Scholar 

  17. J.-D. Grunwaldt, J. B. Wagner, and R. E. Dunin-Borkowski, “Imaging Catalysts at Work: A Hierarchical Approach from the Macro- to the Meso- and Nano-scale,” ChemCatChem, vol. 5, no. 1, pp. 62–80, Jan. 2013.

    Article  CAS  Google Scholar 

  18. B. Bozzini and A. Goldoni, “Will in situ synchrotron-based approaches beat the durability issues of next-generation batteries?,” J. Phys. D. Appl. Phys., vol. 51, no. 5, pp. 0–8, 2018.

    Article  CAS  Google Scholar 

  19. X. Ni et al., “Static and fatigue interlaminar shear reinforcement in aligned carbon nanotubereinforced hierarchical advanced composites,” Compos. Part A-Appl. S., vol. 120, no. October 2018, pp. 106–115, May 2019.

    Article  CAS  Google Scholar 

  20. A. E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, and S. M. Spearing, “In situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography,” Compos. Sci. Technol., vol. 71, no. 12, pp. 1471–1477, Aug. 2011.

    CAS  Google Scholar 

  21. S. C. Garcea, Y. Wang, and P. J. Withers, “X-ray Computed Tomography of Polymer Composites,” Compos. Sci. Technol., vol. 156, pp. 305–319, Mar. 2018.

    CAS  Google Scholar 

  22. S. C. Garcea, I. Sinclair, S. M. Spearing, and P. J. Withers, “Mapping fibre failure in situ in carbon fibre reinforced polymers by fast synchrotron X-ray computed tomography,” Compos. Sci. Technol., vol. 149, pp. 81–89, Sep. 2017.

    CAS  Google Scholar 

  23. J. R. (Joseph R.. Davis, Corrosion of aluminum and aluminum alloys. ASM International, 1999.

  24. S. S. Singh, J. J. Williams, T. J. Stannard, X. Xiao, F. De Carlo, and N. Chawla, “Measurement of localized corrosion rates at inclusion particles in AA7075 by in situ three dimensional (3D) X-ray synchrotron tomography,” Corros. Sci., vol. 104, pp. 330–335, 2016.

    CAS  Google Scholar 

  25. W. A. van Schalkwijk and B. Scrosati, Eds., Advances in Lithium-Ion Batteries. Springer US, 2002.

  26. M. Ebner, F. Marone, M. Stampanoni, and V. Wood, “Visualization and quantification of Electrochemical and Mechanical,” Science, vol. 342, no. November, pp. 716–721, 2013.

    CAS  Google Scholar 

  27. M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning, 2nd Editio. MIT Press, 2018.

  28. T. Perciano, D. M. Ushizrma, E. W. Bethel, Y. D. Mizrahi, D. Parkinson, and J. A. Sethian, “Reduced-complexity image segmentation under parallel Markov Random Field formulation using graph partitioning,” Proc. — Int. Conf. Image Process. ICIP, vol. 2016-August, pp. 1259–1263, 2016.

    Google Scholar 

  29. D. M. Ushizima et al., “IDEAL: Images Across Domains, Experiments, Algorithms and Learning,” Jom, vol. 68, no. 11, pp. 2963–2972, 2016.

    Google Scholar 

  30. D. M. Pelt and K. J. Batenburg, “Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 5238–5251, Dec. 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Fritz, N.K. & Wardle, B.L. In Situ Testing Using Synchrotron Radiation Computed Tomography in Materials Research. MRS Advances 4, 2831–2841 (2019). https://doi.org/10.1557/adv.2019.390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.390

Navigation