Skip to main content
Log in

Fabrication of Hollow Metal Microneedle Arrays Using a Molding and Electroplating Method

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The need for hollow microneedle arrays is important for both drug delivery and wearable sensor applications; however, their fabrication poses many challenges. Hollow metal microneedle arrays residing on a flexible metal foil substrate were created by combining additive manufacturing, micromolding, and electroplating approaches in a process we refer to as electromolding. A solid microneedle with inward facing ledge was fabricated with a two photon polymerization (2PP) system utilizing laser direct write (LDW) and then molded with polydimethylsiloxane. These molds were then coated with a seed layer of Ti/Au and subsequently electroplated with pulsed deposition to create hollow microneedles. An inward facing ledge provided a physical blocking platform to restrict deposition of the metal seed layer for creation of the microneedle bore. Various ledge sizes were tested and showed that the resulting seed layer void could be controlled via the ledge length. Mechanical properties of the PDMS mold was adjusted via the precursor ratio to create a more ductile mold that eliminated tip damage to the microneedles upon removal from the molds. Master structures were capable of being molded numerous times and molds were able to be reused. SEM/EDX analysis showed that trace amounts of the PDMS mold were transferred to the metal microneedle upon removal. The microneedle substrate showed a degree of flexibility that withstood over 100 cycles of bending from side to side without damaging. Microneedles were tested for their fracture strength and were capable of puncturing porcine skin and injecting a dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Kim, J. H. Park, and M. R. Prausnitz, Adv. Drug Deliv. Rev. 64, 1547 (2012).

    Article  CAS  Google Scholar 

  2. A. El-Laboudi, N. S. Oliver, A. Cass, and D. Johnston, Diabetes Technol. Ther. 15, 101–115 (2013).

    Article  CAS  Google Scholar 

  3. Y. C. Kim and M. R. Prausnitz, Drug Deliv. Transl. Res. 1, 7 (2011).

    Article  Google Scholar 

  4. P. R. Miller, R. J. Narayan, and R. Polsky, J. Mater. Chem. B 4, 1379 (2016).

    Article  CAS  Google Scholar 

  5. A. Vrdoljak, Vaccine: Dev. Ther. 3, 47 (2013).

    CAS  Google Scholar 

  6. P. R. Miller, S. A. Skoog, T. L. Edwards, D. M. Lopez, D. R. Wheeler, D. C. Arango, X. Xiao, S. M. Brozik, J. Wang, R. Polsky, and R. J. Narayan, Talanta 88, 739 (2012).

    Article  CAS  Google Scholar 

  7. A. Jina, M. J. Tierney, J. A. Tamada, S. McGill, S. Desai, B. Chua, A. Chang, and M. Christiansen, J. Diabetes Sci. Technol. 8, 483 (2014).

    Article  CAS  Google Scholar 

  8. J. J. Norman, S. O. Choi, N. T. Tong, A. R. Aiyar, S. R. Patel, M. R. Prausnitz, and M. G. Allen, Biomed. Microdev. 15, 203 (2013).

    Article  Google Scholar 

  9. H.J.G.E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. de Boer, S. Y. Yeshurun, M. Hefetz, R. van’t Oever, and A. van den Berg, J. Microelectromech. Syst. 12, 855 (2003).

    Article  Google Scholar 

  10. S. J. Paik, S. Byun, J. M. Lim, Y.a Park, A. Lee, S. Chung, J. Chang, K. Chun, and D. Cho, Sens. Actuat. A 114, 276 (2004).

    Article  CAS  Google Scholar 

  11. S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, J. Pharm. Sci. 87, 922 (1998).

    Article  CAS  Google Scholar 

  12. K. L. Yung, Y. Xu, C. Kang, H. Liu, K. F. Tam, S. M. Ko, F. Y. Kwan, and T. M. H. Lee, J. Micromech. Microeng. 22, 015016 (2011).

    Article  Google Scholar 

  13. P. R. Miller, S. D. Gittard, T. L. Edwards, D. M. Lopez, X. Xiao, D. R. Wheeler, N. A. Monteiro-Riviere, S. M. Brozik, R. Polsky, and R. J. Narayan, Biomicrofluidics, 5, 013415 (2011).

    Article  Google Scholar 

  14. S. P. Davis, , Martanto, W., Allen, M. G., & Prausnitz, M. R.. IEEE Trans. Biomed. Eng. 52, 909 (2005).

    Article  Google Scholar 

  15. K. Kim, D. S. Park, H. M. Lu, W. Che, K. Kim, J. B. Lee, and C. H. Ahn, J. Micromech. Microeng. 14, 597 (2004).

    Article  CAS  Google Scholar 

  16. K. Lee, H. C. Lee, D. S. Lee, and H. Jung, Adv. Mater. 22, 483 (2010).

    Article  CAS  Google Scholar 

  17. P. C. Wang, S. J. Paik, J. Kim, S. H. Kim, and M. G. Allen, Proc. IEEE 24th Int. Conf. Micro Electro Mech. Syst. 1039, 2011.

  18. F. Pérennès, B. Marmiroli, M. Matteucci, M. Tormen, L. Vaccari, and E. Di Fabrizio, J. Micromech. Microeng. 16, 473 (2006).

    Article  Google Scholar 

  19. M. Matteucci, M. Fanetti, M. Casella, F. Gramatica, L. Gavioli, M. Tormen, G. Grenci, F. De Angelis, E. Di Fabrizio, Microelect. Eng. 86, 752 (2009).

    Article  CAS  Google Scholar 

  20. J. A. McGeough, M. C. Leu, K. P. Rajurkar, A. K. M. De Silva, and Q. Liu, CIRP Ann. Manufact. Technol. 50, 499 (2001).

    Article  Google Scholar 

  21. X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, and M. Pumera, Chem. Rev. 115, 11941 (2015).

    Article  CAS  Google Scholar 

  22. Y. Xia and G. M. Whitesides, Ann. Rev. Mater. Sci. 28, 153 (1998).

    Article  CAS  Google Scholar 

  23. P. R. Miller, X. Xiao, I. Brener, D. B. Burckel, R. Narayan, and R. Polsky, Adv. Healthcare Mater. 3, 876 (2014).

    Article  CAS  Google Scholar 

  24. P. R. Miller, R. D. Boehm, S. A. Skoog, T. L. Edwards, M. Rodriguez, S. Brozik, I. Brener, T. Byrd, J. T. Baca, C. Ashley, R. J. Narayan, R. Polsky, Electroanalysis 27, 2239 (2015).

    Article  CAS  Google Scholar 

  25. M. S. Chandrasekar and M. Pushpavanam, Electrochim. Acta 53, 3313 (2008).

    Article  CAS  Google Scholar 

  26. S. E. Hadian and D. R. Gabe, Surf. Coat. Technol. 122, 118 (1999).

    Article  CAS  Google Scholar 

  27. X. Q. Brown, K. Ookawa, and J. Y. Wong, Biomaterials 26, 3123 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, P.R., Moorman, M., Boehm, R.D. et al. Fabrication of Hollow Metal Microneedle Arrays Using a Molding and Electroplating Method. MRS Advances 4, 1417–1426 (2019). https://doi.org/10.1557/adv.2019.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.147

Navigation