Skip to main content
Log in

Plasmonic Optical Nonlinearities of Copper Sulfide Nanoparticles

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Spherical Cu2-xS nanoparticles with an average diameter of 4.6 nm were synthesized by a colloidal method, and their optical nonlinearities around localized surface plasmon resonance in the near-infrared region were investigated. Resonant enhancement of nonlinear absorption, which is similar to that in the case of the noble metal nanoparticles in the visible region, was observed. The nonlinear absorption coefficients of the Cu2-xS nanoparticles were smaller as compared with those of Au nanoparticles with the same dimensions and concentrations. Theoretical simulation of electric field distributions around individual nanoparticles suggested that the free carrier concentration in Cu2-xS nanoparticles was one order of magnitude smaller than that in Au nanoparticles, which led to a weaker local electric field and weaker optical nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Luther, P.K. Jain, T. Ewers, and A.P. Alivisatos, Nature Mater. 10, 361 (2011).

    Article  CAS  Google Scholar 

  2. R.J. Mendelsberg, G. Garcia, H. Li, L. Manna, and D.J. Milliron, J. Phys. Chem. C 116, 12226 (2012).

    Article  CAS  Google Scholar 

  3. F. Scotgnella, G.D. Valle, A.R.S. Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, Euro. Phys. J. B 86, 154 (2013).

    Article  Google Scholar 

  4. J.A. Faucheaux, A.L.D. Stanton, and P.K. Jain, J. Phys. Chem. Lett. 5, 976 (2014).

    Article  CAS  Google Scholar 

  5. A. Comin and L. Manna, Chem. Soc. Rev. 43, 3957 (2014).

    Article  CAS  Google Scholar 

  6. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986).

    Article  CAS  Google Scholar 

  7. C. Flytzanis, F. Hache, M.C. Klein, D. Ricard, and P. Roussignol, in Progress in Optics Vol. 29, 1st ed., edited by E. Wolf (North Holland, Amsterdam, 1991) p. 340

    Google Scholar 

  8. T. Kuzuya, K. Itoh, and K. Sumiyama, J. Colloid Interface Sci. 319, 565 (2008).

    Article  CAS  Google Scholar 

  9. Y. Hamanaka, T. Hirose, K. Yamada, and T. Kuzuya, Opt. Mater. Exp. 6, 275168 (2016).

    Article  Google Scholar 

  10. P. Lukashev, W. R. Lambrecht, T. Kotani, and M. van Schilfgaarde, Phys. Rev. B 76, 195202 (2007).

    Article  Google Scholar 

  11. O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Springer, Berlin, 2004), p. 455.

    Book  Google Scholar 

  12. B. Palpant, in Non-linear Optical Properties of Matter, edited by M. G. Papadopoulos, A. J. Sadlej, and J. Leszczynski (Springer, Dordrecht, 2006) p.472.

    Google Scholar 

  13. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  CAS  Google Scholar 

  14. C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, New York, 1996) p. 150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamanaka, Y., Hirose, T., Yamada, K. et al. Plasmonic Optical Nonlinearities of Copper Sulfide Nanoparticles. MRS Advances 3, 741–746 (2018). https://doi.org/10.1557/adv.2018.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.91

Navigation