Skip to main content
Log in

Carboxylated Carbon Nanotubes/Polyethersulfone Hollow Fiber Mixed Matrix Membranes: Development and Characterization for Enhanced Gas Separation Performance

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carboxylated carbon nanotubes (C or cCNTs) were incorporated in polyethersulfone hollow fiber membranes (P HFMs) to improve the gas separation performance, i.e., pure gas permeability and ideal gas selectivity. The developed CP HFMs showed the remarkable improvement in thermal stability and mechanical strength as compared to that of the pristine P HFMs. The pure gas permeability of CO2, CH4, O2, and N2 gases for the HFMs were measured at 3 bar feed pressure and room temperature. It was observed that the presence of cCNTs in HFMs significantly improved the CO2 and O2 permeability for CP HFMs by 10.8-and 11.7- fold, respectively, as compared to that measured for P HFMs. Furthermore, the ideal gas selectivity for CO2/CH4, O2/N2, and CO2/N2 gas pairs for CP HFMs was also remarkably enhanced by almost 8.6-, 10.7-and 9.9-times, respectively, as compared to that measured for P HFMs. CP HFMs exhibited gas separation performance better than or comparable to that of the literature-reported CNTs-based membranes. Remarkably, the gas separation performance of CP HFMs crossed Robeson’s 2008 upper bound curve for O2/N2 gas-pair and was almost closer to the upper bound curves drawn by Robeson in 2008 for CO2/CH4 and CO2/N2 gas pairs. The improved separation performance can be attributed to the presence of cCNTs in HFMs. Thus, the results obtained in this study clearly showed that the CP HFMs can potentially be used as a membrane material for the industrially relevant gas separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Robeson, J. Memb. Sci. 320, 390–400 (2008).

    Article  CAS  Google Scholar 

  2. S. Sanip, A. Ismail, P. Goh, T. Soga, M. Tanemura and H. Yasuhiko, Sep. Purif. Technol. 78, 208–213 (2011).

    Article  CAS  Google Scholar 

  3. B. P. Biswal, A. Bhaskar, R. Banerjee and U. K. Kharul, Nanoscale 7, 7291–7298 (2015).

    Article  CAS  Google Scholar 

  4. A. Modi, S. K. Verma and J. Bellare, J. Colloid Interface Sci. 504, 86–100 (2017).

    Article  CAS  Google Scholar 

  5. A. Modi, S. K. Verma and J. Bellare, J. Colloid Interface Sci. 514, 750–759 (2018).

    Article  CAS  Google Scholar 

  6. A. Modi, B. Bhaduri and N. Verma, Ind. Eng. Chem. Res. 54, 5172–5178 (2015).

    Article  CAS  Google Scholar 

  7. T. Wang, J.-n. Shen, L.-g. Wu and B. Van der Bruggen, J. Memb. Sci. 466, 338–347 (2014).

    Article  CAS  Google Scholar 

  8. L. Nayak, M. Rahaman, D. Khastgir and T. K. Chaki, Polym. Bull. 67, 1029 (2011).

    Article  CAS  Google Scholar 

  9. M. Aroon, A. Ismail, M. Montazer-Rahmati and T. Matsuura, Sep. Sci. Technol. 45, 2287–2297 (2010).

    Article  CAS  Google Scholar 

  10. A. Ismail, N. Rahim, A. Mustafa, T. Matsuura, B. Ng, S. Abdullah and S. Hashemifard, Sep. Purif. Technol. 80, 20–31 (2011).

    Article  CAS  Google Scholar 

  11. B. Yu, H. Cong, Z. Li, J. Tang and X. S. Zhao, J. Appl. Polym. Sci. 130, 2867–2876 (2013).

    Article  CAS  Google Scholar 

  12. A. D. Kiadehi, A. Rahimpour, M. Jahanshahi and A. A. Ghoreyshi, J. Ind. Eng. Chem. 22, 199–207 (2015).

    Article  Google Scholar 

  13. G. H. Koops, J. A. M. Nolten, M. H. V. Mulder and C. A. Smolders, J. Appl. Polym. Sci. 53(12), 1639–1651 (1994).

    Article  CAS  Google Scholar 

  14. J. Ahn, W. J. Chung, I. Pinnau and M. D. Guiver, J. Membr. Sci. 314(1–2), 123–133 (2008).

    Article  CAS  Google Scholar 

  15. A. D. Kiadehi, A. Rahimpour, M. Jahanshahi and A. A. Ghoreyshi, J. Ind. Eng. Chem. 22, 199–207 (2015).

    Article  Google Scholar 

  16. M. N. Nejad, M. Asghari and M. Afsari, ChemBioEng Reviews 3, 276–298 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, A., Verma, S.K. & Bellare, J. Carboxylated Carbon Nanotubes/Polyethersulfone Hollow Fiber Mixed Matrix Membranes: Development and Characterization for Enhanced Gas Separation Performance. MRS Advances 3, 3103–3109 (2018). https://doi.org/10.1557/adv.2018.411

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.411

Navigation