Skip to main content
Log in

A Hybrid 3D Printing and Robotic-assisted Embedding Approach for Design and Fabrication of Nerve Cuffs with Integrated Locking Mechanisms

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The ability to interface electronic materials with the peripheral nervous system is required for stimulation and monitoring of neural signals. Thus, the design and engineering of robust neural interfaces that maintain material-tissue contact in the presence of material or tissue micromotion offer the potential to conduct novel measurements and develop future therapies that require chronic interface with the peripheral nervous system. However, such remains an open challenge given the constraints of existing materials sets and manufacturing approaches for design and fabrication of neural interfaces. Here, we investigated the potential to leverage a rapid prototyping approach for the design and fabrication of nerve cuffs that contain supporting features to mechanically stabilize the interaction between cuff electrodes and peripheral nerve. A hybrid 3D printing and robotic-embedding (i.e., pick-and-place) system was used to design and fabricate silicone nerve cuffs (800 µm diameter) containing conforming platinum (Pt) electrodes. We demonstrate that the electrical impedance of the cuff electrodes can be reduced by deposition of the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on cuff electrodes via a post-processing electropolymerization technique. The computer-aided design and manufacturing approach was also used to design and integrate supporting features to the cuff that mechanically stabilize the interface between the cuff electrodes and the peripheral nerve. Both ‘self-locking’ and suture-assisted locking mechanisms are demonstrated based on the principle of making geometric alterations to the cuff opening via 3D printing. Ultimately, this work shows 3D printing offers considerable opportunity to integrate supporting features, and potentially even novel electronic materials, into nerve cuffs that can support the design and engineering of next generation neural interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Murphy and A. Atala, Nat. Biotech. 32, 773–785 (2014).

    Article  CAS  Google Scholar 

  2. Y. L. Kong, M. K. Gupta, B. N. Johnson, and M. C. McAlpine, Nano Today 11, 330–350 (2016).

    Article  CAS  Google Scholar 

  3. E. Macdonald, R. Salas, D. Espalin, M. Perez, E. Aguilera, D. Muse and R. B. Wicker, IEEE Access 2, 234–242 (2014).

    Article  Google Scholar 

  4. B. N. Johnson, K. Z. Lancaster, G. Zhen, J. He, M. K. Gupta, Y. L. Kong, E. A. Engel, K. D. Krick, A. Ju, F. Meng, L. W. Enquist, X. Jia, and M. C. McAlpine, Adv. Funct. Mater. 25, 6205–6217 (2015).

    Article  CAS  Google Scholar 

  5. B. N. Johnson, K. Z. Lancaster, I. B. Hogue, F. Meng, Y. L. Kong, L. W. Enquist, and M. C. McAlpine, Lab Chip 16, 1393–1400 (2016).

    Article  CAS  Google Scholar 

  6. M. Singh, Y. Tong, K. Webster, E. Cesewski, A. P. Haring, S. Laheri, B. Carswell, T. J. O’Brien, C. H. Aardema, R. S. Senger, J. L. Robertson, and B. N. Johnson, Lab Chip 17, 2561–2571 (2017).

    Article  CAS  Google Scholar 

  7. A. P. Haring, H. Sontheimer, and B. N. Johnson, Stem Cell Rev. Rep., 13, 381–406 (2017).

    Article  CAS  Google Scholar 

  8. A. P. Haring, A. U. Khan, G. Liu, and B. N. Johnson, Adv. Opt. Mater. 5, 1700367 (2017).

    Article  Google Scholar 

  9. M. K. Gupta, F. Meng, B. N. Johnson, Y. L. Kong, L. Tian, Y.-W. Yeh, N. Masters, S. Singamaneni, and M. C. McAlpine, Nano Lett. 15, 5321–5329 (2015).

    Article  CAS  Google Scholar 

  10. H.-W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala, Nat. Biotech. 34, 312–319 (2016).

    Article  CAS  Google Scholar 

  11. Y. L. Kong, I. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T.-W. Koh, H.-A. Chin, D. A. Steingart, B. P. Rand, and M. C. McAlpine, Nano Lett. 14, 7017–7023 (2014).

    Article  CAS  Google Scholar 

  12. B. N. Johnson and X. Jia, Neural Regen. Res. 11, 1568–1569 (2016).

    Article  Google Scholar 

  13. C. J. Pateman, A. J. Harding, A. Glen, C. S. Taylor, C. R. Christmas, P. P. Robinson, S. Rimmer, F. M. Boissonade, F. Claeyssens, and J. W. Haycock, Biomaterials 49, 77–89 (2015).

    Article  CAS  Google Scholar 

  14. R. Lozano, L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin Iii, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace, Biomaterials 67, 264–273 (2015).

    Article  CAS  Google Scholar 

  15. K. A. Ludwig, J. D. Uram, J. Yang, D. C. Martin, and D. R. Kipke, J. Neural Eng. 3, 59–70 (2006).

    Article  Google Scholar 

  16. X. Cui and D. C. Martin, Sens. Actuators B 89, 92–102 (2003).

    Article  CAS  Google Scholar 

  17. S. J. Wilks, A. J. Woolley, L. Ouyang, D.C. Martin, and K. J. Otto, Conf. Proc. IEEE Eng. Med. Biol. Soc., 5412–5415 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blake N. Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Y., Murbach, J.M., Subramanian, V. et al. A Hybrid 3D Printing and Robotic-assisted Embedding Approach for Design and Fabrication of Nerve Cuffs with Integrated Locking Mechanisms. MRS Advances 3, 2365–2372 (2018). https://doi.org/10.1557/adv.2018.378

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.378

Navigation