Skip to main content
Log in

Electronically Pure Single Chirality Semiconducting Single-Walled Carbon Nanotube for Large Scale Electronic Devices

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon nanotube thin film transistors (TFTs) with characteristics resembling those of TFTs constructed on amorphous silicon, low-temperature polycrystalline silicon and metal oxides were fabricated on (6,5) single chirality single-walled carbon nanotube (SWCNT) thin film deposited from electronically pure semiconducting (6,5) single chirality single-walled carbon nanotube (SWCNT) ink. This ink was extracted in industrial scale from raw SWCNTs produced using high pressure carbon monoxide conversion, and deposited on pretreated substrates to form uniform and consistent (6,5) HiPCO SWCNT thin film using solution process. The (6,5) HiPCO SWCNT thin films were characterized as pure semiconductor without metallic impurities showing classic nonlinear current-bias curves in Schottky-type diodes. Both N-type and P-type (6,5) HiPCO SWCNT TFTs were fabricated with femto Ampere off-current and ION/IOFF ratio of 108 by depositing SiNx and HfO2 dielectrics on the top of (6,5) HiPCO SWCNT thin films, respectively. The (6,5) HiPCO SWCNT inverter with voltage gain of 52 was also demonstrated by wire-bonding one P-type HiPCO SWCNT TFT to one N-type HiPCO SWCNT TFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Cao, S.-J. Han, J. Tersoff, A. D. Franklin, Y. Zhu, Z. Zhang, G. S. Tulevski, J. Tang and W. Haensch, Science 350, 680 (2015).

    Article  Google Scholar 

  2. Q. Cao, H.-S. Kim, N. Pimparker, J. P. Kulkarni, C. J. Wang, M. Shim, K. Roy, M. A. Alam, and J. A. Rogers, Nature 454, 495 (2008).

    Article  CAS  Google Scholar 

  3. C. G. Almudever, and A. Rubio, Variability and Reliability of CNFET Technology: Impact of Manufacturing Imperfections. Microelectron. Reliab. 55, 358 (2015).

  4. H. P. Li, H. Liu, Y. Tang, W. Guo, L. L. Zhou and N. Smolinski, ACS Appl. Mater. & Interfaces 8, 20527 (2016).

    Article  CAS  Google Scholar 

  5. M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith and R. E. Smalley, J. Vac. Sci. Technol. A. 19, 1800 (2001).

    Article  CAS  Google Scholar 

  6. S. Ghosh, S. Bachilo and R. B. Weisman, Nature Nanotechnol. 5, 443 (2010).

    Article  CAS  Google Scholar 

  7. H. P. Liu, D. Mishide, T. Tanaka and H. Kataura, Nature Commun. 2, 309 (2011).

    Article  Google Scholar 

  8. Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei and H. Kataura, Nature Commun. 7, 12056 (2016).

    Article  CAS  Google Scholar 

  9. N. K. Subbaiyan, S. Cambré, A. N. G. Parra-Vasquez, E. H. Hároz, S. K. Doorn and J. G. Duque, ACS Nano. 8, 1619 (2014).

    Article  CAS  Google Scholar 

  10. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. and Weisman, R. E. Smalley, Science 297, 593 (2002).

    Article  Google Scholar 

  11. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley and R. B. Weisman, Science 298, 2361 (2002).

    Article  CAS  Google Scholar 

  12. S. Bonhommeau, P. Deria, M. G. Glesner, D. Talaga, S. Najjar, C. Belin, L. Auneau, S. Trainini, M. J. Therien and V. J. Phys. Chem. C 117, 14840 (2013).

  13. T.Takahashi, K. Takei, A. G. Gillies, R. S. Fearing and A. Javey, Nano Lett. 11, 5408 (2011).

    Article  Google Scholar 

  14. H. P. Li and L. L. Zhou, Chem. Select 1, 3569 (2016).

    CAS  Google Scholar 

  15. H. P. Li, ECS J. Solid State Sci. Technol. 5, M93 (2016).

  16. N. Lustig and J. Kanicki, J. Appl. Phys. 65, 3951 (1989).

    Article  CAS  Google Scholar 

  17. M. F. Lambrinos, R. Valizadeh and J. S. Colligon, J. Vac. Sci. Technol. B 16, 589 (1998).

    Article  CAS  Google Scholar 

  18. M. Margańska, M. del Valle, S. H. Jhang, C. Strunk and M. Grifoni, Phys. Rev. 83, 193407 (2011).

    Article  Google Scholar 

  19. M. J. Powell, IEEE Trans Electron Dev. 36, 2753 (1989).

    Article  CAS  Google Scholar 

  20. K. H. Cherenack, A. Z. Kattamis, B. Hekmatshoar, J. C. Sturm and S. Wagner, IEEE Electron. Dev. Lett. 28, 1004 (2007).

    Article  CAS  Google Scholar 

  21. J. F. Wager, Inf. Disp. 2, 26 (2014).

    Google Scholar 

  22. J. F. Wager, Inf. Disp. 32, 16 (2016).

    Google Scholar 

  23. A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, Nature 424, 654 (2003).

    Article  CAS  Google Scholar 

  24. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntrye, P. McEuen, M. Lundstrom and H. Dai, Nature Mater. 1, 241 (2002).

    Article  CAS  Google Scholar 

  25. M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S.-I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa and H. Ohshima, IEEE Trans. Electron. Dev. 46, 2282 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H. Electronically Pure Single Chirality Semiconducting Single-Walled Carbon Nanotube for Large Scale Electronic Devices. MRS Advances 2, 83–88 (2017). https://doi.org/10.1557/adv.2017.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.15

Navigation