Skip to main content
Log in

Correlative Nanomechanical Measurements for Complex Engineered Systems

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Multilayered film stacks, with length scales less than 10 nm are commonly used in a variety of devices, but present significant challenges to mechanical testing and evaluation. This is due to property convolution of the different layers. Both the properties of the individual layers and the combined response of the film stack are important input for design optimization. Here, we present ex-situ nanoindentation of a film stack representative of a perpendicular magnetic recording (PMR) hard disc drive (HDD), with more than 10 layers. We then compare this with in-situ transmission electron microscopy indentation to visualize deformation of individual layers of the stack. The ex-situ testing reveals early plastic deformation, with an initially high contact pressure (13 GPa) and modulus ( >160 GPa), followed by significant softening (8 GPa contact pressure and 140 GPa modulus), then slight hardening to 9 GPa. From in-situ testing, it is revealed that the metallic layer directly under the diamond like carbon (DLC) contributes the majority of the deformation and plastic flow, which is in turn constrained by a metallic oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Volinsky, J. B. Vella and W. W. Gerberich, Thin Solid Films 429, 201–210 (2003).

    Article  CAS  Google Scholar 

  2. D. J. Morris and R. F. Cook, J. Mater. Res. 23, 2443–2457 (2008).

    Article  CAS  Google Scholar 

  3. W. D. Nix and H. Gao, J. Mech. Phys. Sol. 46, 411-425 (1998).

    Article  CAS  Google Scholar 

  4. S. J. Bull, J. Phys. D. Appl. Phys. 38, R393 (2005).

    Article  CAS  Google Scholar 

  5. N. Schwarzer, FilmDoctor. (SIO® - Saxonian Institute of Surface Mechanics, www.siomec.de, 2011).

  6. M. Barlet, et al., J. Mater. Res. 23, 1113–1127 (2009).

    Google Scholar 

  7. T. Liew, S. W. Wu, S. K. Chow and C. T. Lim, Tribology International 33, 611–621 (2000).

    Article  CAS  Google Scholar 

  8. S.-C. Lee, et al., Journal of Tribology 131, 011904 (2008).

    Article  CAS  Google Scholar 

  9. F. D. Stacey, S. K. Banerjee, The Physical Principles of Rock Magnetism. Vol. 5. (Elsevier, 2012) p. 57.

    Google Scholar 

  10. A. C. Fischer-Cripps, Nanoindentation, (Springer, New York, 2004) p. 39–75.

    Book  Google Scholar 

  11. D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintsala, E.D., Asif, S. & Stauffer, D.D. Correlative Nanomechanical Measurements for Complex Engineered Systems. MRS Advances 1, 799–804 (2016). https://doi.org/10.1557/adv.2016.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.76

Navigation