Skip to main content
Log in

Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We use cyclic charge-discharge experiments to evaluate the capacity retention rates of two quinone-bromide flow batteries (QBFBs). These aqueous QBFBs use a negative electrolyte containing either anthraquinone-2,7-disulfonic acid (AQDS) or anthraquinone-2-sulfonic acid (AQS) dissolved in sulfuric acid, and a positive electrolyte containing bromine and hydrobromic acid. We find that the AQS cell exhibits a significantly lower capacity retention rate than the AQDS cell. The observed AQS capacity fade is corroborated by NMR evidence that suggests the formation of hydroxylated products in the electrolyte in place of AQS. We further cycle the AQDS cell and observe a capacity fade rate extrapolating to 30% loss of active species after 5000 cycles. After about 180 cycles, bromine crossover leads to sufficient electrolyte imbalance to accelerate the capacity fade rate, indicating that the actual realization of long cycle life will require bromine rebalancing or a membrane less permeable than Nafion® to molecular bromine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Soloveichik, Chem Rev 115 (20), 11533–11558 (2015).

    Article  CAS  Google Scholar 

  2. B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, Nature 505 (7482), 195–198 (2014).

    Article  CAS  Google Scholar 

  3. Q. Chen, L. Eisenach and M. J. Aziz, Journal of The Electrochemical Society 163, A5057–A5063 (2016).

    Article  CAS  Google Scholar 

  4. B. Yang, L. Hoober-Burkhardt, F. Wang, G. K. Surya Prakash and S. R. Narayanan, Journal of the Electrochemical Society 161, A1371–A1380 (2014).

    Article  CAS  Google Scholar 

  5. B. Yang, L. Hoober-Burkhardt, S. Krishnamoorthy, A. Murali, G. K. S. Prakash and S. R. Narayanan, Journal of The Electrochemical Society 163 (7), A1442–A1449 (2016).

    Article  CAS  Google Scholar 

  6. B. Huskinson, M. P. Marshak, M. R. Gerhardt and M. J. Aziz, ECS Transactions 61, 27– 30 (2014).

    Article  CAS  Google Scholar 

  7. M. R. Gerhardt, L. Tong, R. Gómez-Bombarelli, Q. Chen, M. P. Marshak, C. J. Galvin, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, Advanced Energy Materials, 1601488 (2016).

    Google Scholar 

  8. A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications. (Wiley, New York, 2001).

    Google Scholar 

  9. K. T. Cho, M. C. Tucker, M. Ding, P. Ridgway, V. S. Battaglia, V. Srinivasan and A. Z. Weber, ChemPlusChem 80 (2), 402–411 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerhardt, M.R., Beh, E.S., Tong, L. et al. Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries. MRS Advances 2, 431–438 (2017). https://doi.org/10.1557/adv.2016.667

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.667

Navigation