Skip to main content
Log in

Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT) composites are being explored to improve the conductivity and density of electrical wire used in aviation. Presented are the current carrying capacity of a CNT-Cu composite and Roman spectroscopy and electrical conductivity of Buckypaper (BP) made of normal and sorted 95% metallic CNT (m-CNT). The ampacity of the Cu-CNT composite was 3.8% lower than pure Cu. This is significant because it is not in agreement with high CNT ampacity claims. The average conductivity of the CNT in the sorted, 95% metallic BP was 2.5 times higher than the CNT in the un-sorted BP. This shows the importance of the intrinsic CNT conductivity as opposed to interfacial resistances and that the conductivity of the semiconductor CNT present in the un-sorted BP must be much lower than the conductivity of m-CNT. The high conductivity of the sorted BP provides proof that conductivity improvements in CNT composites can be made by the use of sorted, highly conductive m-CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rolt, and J. Whurr in Optimizing Propulsive Efficiency in Aircraft with Boundary Layer Ingesting Distributed Propulsion, (22nd Int. Symp. on Air Breathing Engines, Phoenix, AZ, 2015), ISABE-2015-20201, pp. 1–10.

    Google Scholar 

  2. J. R. Welstead, and J. L. Felder in Conceptual Design of a Single-Aisle Turboelectric Commercial Transport with Fuselage Boundary Layer Ingestion, (AIAA SciTech Conf., 54th AIAA Aerospace Sciences Meeting, San Diego, CA, 2016), AIAA-2016-1027, pp. 1–17.

    Book  Google Scholar 

  3. M. K. Bradley, and C. K. Droney, “Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development,” NASA/CR—2012-217556 (2012).

  4. P. R. Bandaru, J. Nanosci. Nanotechnol. 7, 3, 1–29 (2007).

    Google Scholar 

  5. J. Liu, and M. C. Hersam, MRS Bull. 35, 315–321 (2010).

    Article  CAS  Google Scholar 

  6. H. C. de Groh III, “Consideration of Conductive Motor Winding Materials at Room and Elevated Temperatures,” NASA/TM—2015-218882 (2015).

  7. SouthWest NanoTechnologies, Technical Data Sheet, FW100X, Few-Wall Carbon Nanotubes, 4.15.2015 Rev 5 (2015). (last retrieved Jan. 19, 2016): http://www.swentnano.com/uploads/3/0/7/0/30708225/fw100x_tds_rev5.pdf/uploads/3/0/7/0/30708225/fw100x_tds_rev5.pdf

  8. NanoIntegris Technical Data Sheet, IsoNanotubes-M, -S, and PureTubes, (NanoIntegris, Skokie, IL, 2015). http://raymor.com/wp-content/uploads/2015/01/Carbon-Nanotubes-Technical-Data-Sheet.pdf/wp-content/uploads/2015/01/Carbon-Nanotubes-Technical-Data-Sheet.pdf (last retrieved Jan. 19, 2016).

  9. K. K. Kim, J. S. Park, S. J. Kim, H. Z. Geng, K. H. An, C-M. Yang, K. Sato, R. Saito, and Y. H. Lee, Phys. Rev. B 76, 205426 (2007).

    Article  Google Scholar 

  10. H. C. de Groh III, “Ramon Spectroscopy and Electrical Conductivity of metallic carbon nanotube Buckypaper and Ampacity of a CNT-Cu Composite,” in press NASA/TM 2016.

  11. C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba, M. Yamura, and K. Heta, Nat. Commun. 4, 2202 (2013).

    Article  Google Scholar 

  12. C. Dyke, L. M. Jacob, D. Madden, and V. Barrera in Ultrahigh Conductivity Umbilicals: Polymer Nanotube Umbilicals (Offshore Technology Conference, Houston, TX, 2013), OTC-24255, pp. 1–5.

  13. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R. J. Kalenczuk, Mater. Sci.-Poland 26, 2, 433–440 (2008).

  14. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).

    Article  CAS  Google Scholar 

  15. Y. Xue, “Experimental Study of Electrical Conductivity of Carbon Nanotube, Nanofiber Buckypapers and Their Composites,” M.S. Thesis, Florida State Univ., Tallahassee, FL (2007).

  16. J-H. Liu, H-Y. Miao, S. Lakshmanan, L-C. Wang, and R-H. Tsai, J. Nanomater. 2013 (2013). http://www.hindawi.com/journals/jnm/2013/635647/ (last retrieved Feb. 3, 2016).

  17. C-S. Yeh, “A Study of Nanostructure and Properties of Mixed Nanotube Buckypaper Materials: Fabrication, Process Modeling Characterization, and Property Modeling,” Ph.D. Thesis, Florida State University, Tallahassee, FL (2007), p. 147.

    Google Scholar 

  18. A. Aldalbahi, Carbon, 50, 3, 1197–1208 (2012).

    Article  CAS  Google Scholar 

  19. K. Yang, J. He, P. Puneet, Z. Su, M. J. Skove1, J. Gaillard, T. M. Tritt, and A. M. Rao, J. Phys. Condens. Matter 22, 1–6 (2010). http://iopscience.iop.org/article/10.1088/0953-8984/22/33/334215/meta;jsessionid=5825D471AA4D0BAE435C931F8FBABC21.c2.iopscience.cld.iop.org/article/10.1088/0953-8984/22/33/334215/meta;jsessionid=5825D471AA4D0BAE435C931F8FBABC21.c2.iopscience.cld.iop.org (last retrieved Feb 2, 2016).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Groh, H.C. Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity. MRS Advances 2, 71–76 (2017). https://doi.org/10.1557/adv.2016.653

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.653

Navigation