Skip to main content
Log in

Room-Temperature Wafer Bonded Multi-Junction Solar Cell Grown by Solid State Molecular Beam Epitaxy

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We studied the InGaP/GaAs//InGaAsP/InGaAs four-junction solar cells grown by molecular beam epitaxy (MBE), which were fabricated by the novel wafer bonding. In order to reach a higher conversion efficiency at highly concentrated illumination, heat generation should be minimized. We have improved the device structure to reduce the thermal and electrical resistances. Especially, the bond resistance was reduced to be the lowest value of 2.5 × 10–5 Ohm cm2 ever reported for a GaAs/InP wafer bond, which was obtained by the specific combination of p+-GaAs/n-InP bonding and by using room-temperature wafer bonding. Furthermore, in order to increase the short circuit current density (Jsc) of 4-junction solar cell, we have developed the quality of InGaAsP material by increasing the growth temperature from 490 °C to 510 °C, which leads to a current matching. In a result, an efficiency of 42 % at 230 suns of the four-junction solar cell fabricated by room-temperature wafer bonding was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H.Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007)

    Article  Google Scholar 

  2. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, Appl. Phys. Lett. 93, 123505 (2008).

    Article  Google Scholar 

  3. P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A.Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, IEEE J. Photovoltaics. 4, 493 (2014).

    Article  Google Scholar 

  4. M. Stan , D. Aiken , B. Cho , A. Cornfeld , V. Ley , P. Patel , P. Sharps ,T. Varghese, J. Crystal Growth. 312, 13705 (2010).

    Article  Google Scholar 

  5. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T. N. Tibbits, and K. Schwarzburg, Prog. Photovoltaics. 22, 277 (2014).

    Article  CAS  Google Scholar 

  6. S. Uchida, T. Watanabe, H. Yoshida, T. Tange, M. Arimochi, M. Ikeda, P. Dai, W. He, L. Ji, S. L. Lu, and H. Yang, Appl. Phys. Express. 7, 112301(2014).

    Article  Google Scholar 

  7. M. Arimochi, T. Watanabe, H. Yoshida, T. Tange, I. Nomachi, M. Ikeda, P. Dai, W. He, L. Ji, S. L. Lu, H. Yang, and S. Uchida, Jpn. J. Appl. Phys. 54, 056601 (2015).

    Article  Google Scholar 

  8. P. Dai, S. Lu, S.Uchida, L. Ji, Y. Wu, M. Tan, L. Bian, and H. Yang, Applied Physics Express. 9, 016501 (2016)

    Article  Google Scholar 

  9. K. Nakayama, K. Tanabe, and H. A. Atwater, J. Appl. Phys. 103, 094503(2008).

    Article  Google Scholar 

  10. S. Essig and F. Dimroth, ECS J. Solid State Sci. Technol. 2, Q178 (2013).

    Article  CAS  Google Scholar 

  11. D. J. Friedman, S. R. Kurtz, K. A. Bertness, A. E. Kibbler, C. Kramer, J. M. Olson, D. L. King, B. R. Hansen, and J. K. Snyder, Proc. IEEE 24th Photovoltaic Specialists Conf. 1829(1994).

  12. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics. 23, 1 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Uchida, S. Room-Temperature Wafer Bonded Multi-Junction Solar Cell Grown by Solid State Molecular Beam Epitaxy. MRS Advances 1, 2907–2916 (2016). https://doi.org/10.1557/adv.2016.429

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.429

Navigation