Skip to main content
Log in

Microring Resonators and Silicon Photonics

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Silicon Photonics is the technological to face the future challenges in data communications and processing. This technology follows the same paradigm as the technological revolution of the integrated circuit industry, that is, the miniaturization and the standardization. One of the most important building blocks in Silicon Photonics is the microresonator, a circular optical cavity, which enables many different passive and active optical functions. Here, we will describe the new physics of the intermodal coupling, which occurs when multi radial mode resonators are coupled to waveguides, and of the optical chaos, which develops in coupled sequence of resonators. In addition, an application of resonators in the label-free biosensing will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chen, Y. Gong, M. Fiorani, and S. Aleksic, IEEE Commun. Mag. 53, 140 (2015).

    Google Scholar 

  2. C. Kachris, K. Kanonakis, and I. Tomkos, IEEE Commun. Mag. 51, 39 (2013).

    Google Scholar 

  3. L. Pavesi and G. Guillot, Optical interconnects, Springer Series Opti. 119 (2006).

  4. R.-J. Essiambre and R. W. Tkach, P. IEEE, 100, 1035 (2012).

    Google Scholar 

  5. Minnesota Internet Traffic Study (MINTS). referenced on: http://www.dtc.umn.edu/mints/

  6. G. P. Agrawal, “Nonlinear fiber optics”. (Academic Press – 2007).

  7. R.-J. Essiambre and R. W. Tkach, P. IEEE, 100, 1035 (2012).

    Google Scholar 

  8. C. A. Brackett, IEEE J. Sel. Area Comm. 8, 948 (1990).

    Google Scholar 

  9. G. Moore, Electronics Magazine 38, 114–117 (1965).

    Google Scholar 

  10. J. D. Plummer, “Silicon VLSI technology: fundamentals, practice, and modeling”. Pearson (Education – 2009)

  11. M. Waldrop, Nature 530, 144 (2016).

    CAS  Google Scholar 

  12. G. T. Reed and A. P. Knights, “Silicon photonics” (Wiley Online Library – 2008).

  13. L. Pavesi and D. J. Lockwood, “Silicon photonics, vol. 1”. (Springer Science & Business Media – 2004)

  14. D. Dai and J. E. Bowers, Nanophotonics, 3, 283 (2014)

    CAS  Google Scholar 

  15. The fabrication process of some materials such as III-V semiconductors, for essentially providing light sources an detectors, are not CMOS compatible but are integrated usually as discrete components on the Silicon-based chip

  16. Y. Li, S. Verstuyft, G. Yurtsever, S. Keyvaninia, G. Roelkens, D. Van Thourhout, and R. Baets, Appl. Optics, 52, 2145 (2013).

    Google Scholar 

  17. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Opt. Express, 15, 7610 (2007)

    Google Scholar 

  18. F. B. Myers and L. P. Lee, Lab. Chip, 8, 2015 (2008)

    CAS  Google Scholar 

  19. B. Redding, S. F. Liew, R. Sarma, and H. Cao, Nat. Photonics, 7, 746 (2013).

    CAS  Google Scholar 

  20. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, J. Biophotonics, 212 (2009).

  21. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, Opt. Express, 20, 20292 (2012).

    Google Scholar 

  22. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, Nature Commun. 5, 3541 (2014).

    Google Scholar 

  23. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker and M. Ghulinyan, Opt. Express, 20, 22934 (2012).

    Google Scholar 

  24. M. Mancinelli, M. Borghi, F. Ramiro-Manzano, J. Fedeli, and L. Pavesi, Opt. Express, 22, 14505 (2014).

    CAS  Google Scholar 

  25. R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, G. Pucker, C. Pederzolli, L. Pavesi, Sensors. 15, 17300 (2015).

    CAS  Google Scholar 

  26. G. C. Righini, Y. Dumeige, P. F _eron, M. Ferrari, G. Nunzi Conti, D. Ristic, and S. Soria. Riv. Nuovo Cimento, 34, 435 (2011).

    CAS  Google Scholar 

  27. D. G. Rabus. “Integrated Ring Resonators” (Springer,- 2007).

  28. A. Yariv. IEEE Photonic. Tech. L. 14, 483, (2002).

    Google Scholar 

  29. M. Ghulinyan, R. Guider, G. Pucker, and L. PavesiIEEE Photonic. Tech. L. 23, 1166 (2011)

    CAS  Google Scholar 

  30. M. Ghulinyan, F. Ramiro-Manzano, R. Guider, N. Prtljaga, G. Pucker and L. Pavesi, Proc. SPIE 8431 (2012).

    Google Scholar 

  31. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker and M. Ghulinyan, Opt. Letters, 38, 3562 (2013).

    CAS  Google Scholar 

  32. F. Ramiro-Manzano, M. Ghulinyan, N. Prtljaga, G. Pucker, L. Pavesi, Proc. SPIE 8600 (2013)

    Google Scholar 

  33. F. Ramiro-Manzano; N. Prtljaga; L. Pavesi; G. Pucker; M. Ghulinyan, Opt. Express, 20, 22934 (2012)

    Google Scholar 

  34. M. Ghulinyan, F. Ramiro-Manzano, N. Prtljaga, R. Guider, I. Carusotto, A. Pitanti, G. Pucker; and L. Pavesi, Phys. Rev. Lett. 110, 163901 (2013)

    CAS  Google Scholar 

  35. To be published

  36. M. Ghulinyan, F. Ramiro Manzano, N. Prtljaga, M. Bernard, L. Pavesi, G. Pucker and I. Carusotto, Phys. Rev. A 90, 053811 (2014)

    Google Scholar 

  37. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,”Opt. Lett. 29, 2387 (2004).

    Google Scholar 

  38. P. E. Barclay, K. Srinivasan, and O. Painter, Opt. Express 13, 801 (2005).

    CAS  Google Scholar 

  39. Q. Xu and M. Lipson, Opt. Express 15, 924 (2007)

    Google Scholar 

  40. T. J. Johnson, M. Borselli, and O. Painter, Opt. Express 14, 817 (2006).

    Google Scholar 

  41. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, Opt. Express 13, 9623 (2005)

    CAS  Google Scholar 

  42. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, and P. Bienstman, Opt. Express 20, 20292 (2012).

    Google Scholar 

  43. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Mortier, K. Vandoorne, B. Schneider, B. Schrauwen, J. Dambre, and P. Bienstman, in Asia Communications and Photonics Conference, J. Opt. Soc. Am. (2012)

  44. T. Van Vaerenbergh, M. Fiers, J. Dambre, and P. Bienstman, Phys. Rev. A 86, 063808 (2012)

    Google Scholar 

  45. M. Mancinelli, M. Borghi, F. Ramiro-Manzano, J. M. Fedeli and L. Pavesi, Opt. Express, 22, 14505 (2012)

    Google Scholar 

  46. M.C. Estevez, M. Alvarez, L.M. Lechuga, Laser & Photonics Reviews. 6, 463 (2012)

    Google Scholar 

  47. C. Ciminelli, C.M. Campanella, F. Dell’Olio, C.E. Campanella, M.N. Armenise, Prog. Quantum Electron. 37, 51 (2013)

    Google Scholar 

  48. A. Samusenko, D. Gandolfi, G. Pucker, T. Chalyan, R. Guider, M. Ghulinyan and L. Pavesi. J. Lightwave Technol. 34, 969 (2016);

    CAS  Google Scholar 

  49. D. Gandolfi “On-chip photonic label-free biosensors”. PhD Thesis, University of Trento, Trento, Italy (2015)

  50. T. Chalyan, D. Gandolfi, R. Guider, L. Pavesi, L. Pasaquardini, C. Pederzolli, A. Samusenko, G. Pucker, IEEE BioPhotonics (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramiro-Manzano, F., Biasi, S., Bernard, M. et al. Microring Resonators and Silicon Photonics. MRS Advances 1, 3281–3293 (2016). https://doi.org/10.1557/adv.2016.393

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.393

Navigation