Skip to main content
Log in

RapidNano: Towards 20nm Particle Detection on EUV Mask Blanks

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling EUV masks should not add particles larger than 20 nm. Detection methods for 20 nm particles on large area surfaces are needed to qualify the equipment for cleanliness. Detection of 20 nm particles is extremely challenging, not only because of the particle size, but also because of the large surface area and limited available time.

In 2002 TNO developed the RapidNano, a platform that is capable of detecting nanoparticles on flat substrates. Over the last decade, the smallest detectable particle size was decreased while the inspection rate was increased. This effort has led to a stable and affordable detection platform that is capable of inspecting the full surface of a mask blank.

The core of RapidNano is a dark-field imaging technique. Every substrate type has a typical background characteristic, which strongly affects the size of the smallest detectable particle. The noise level is induced by the speckle generated by the surface roughness of the mask. The signal-to-noise ratio can be improved by illuminating the inspection area from nine different angles. This improvement was first shown on test bench level and then applied in the RapidNano3. The RapidNano3 is capable of detecting 42nm latex sphere equivalents (and larger) on silicon surfaces. RapidNano4, the next generation, will use 193 nm light and the same nine angle illumination mode. Camera sensitivity and available laser power determine the achievable throughput. Therefore, special care was given to the optical design, particularly the optical path. With RapidNano4, TNO will push the detection limit of defects on EUV blanks to below 20nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Moore, Proc. IEEE 86, 1, 82-84, 1998 Reprinted from Gordon E. Moore, Electronics, 114–117, April 19, 1965.

    Article  Google Scholar 

  2. G.E. Moore, reprinted from Technical Digest 1975. International Electron Devices Meeting, IEEE, 11-13 (1975).

  3. ITRS 2013, Litho_2013 tables.

  4. A. Yen, Presentation EUVL symposium, Washington, October 27th 2014.

  5. C. Zoldesi, K. Bal, B. Blum, G. Bock, D. Brouns, F. Dhalluin, N. Dziomkina, J. Diego Arias Espinoza, J. de Hoogh, S. Houweling, M. Jansen, M. Kamali, A. Kempa, R. Kox, R. de Kruif, J. Lima, Y. Liu, H. Meijer, H. Meiling, I. van Mil, M. Reijnen, L. Scaccabarozzi, D. Smith, B. Verbrugge, L. de Winter, X. Xiong, J. Zimmerman, Proc. SPIE 9048, 90481N (2014).

    Article  Google Scholar 

  6. E. Ham, J. van der Donck, B. Mertens, R. Snel, M. Oderwald, R. Lansbergen, H. van den Berg, H. Meiling, H. Meijer, T. Nabben, R. Moors, B. Blum, Poster at EUVL Symposium, San Diego, November 7th 2005, Available at: http://www.sematech.org/meetings/archives/litho/euvl/7470/Poster/FinalS1/1-RP-01%20Ham_TNO%20Poster.pdf, accessed on March 21st, 2016.

  7. O. Brux, P. van der Walle, J.C.J. van der Donck, P. Dress, Proc. SPIE, Vol8166, 81662S (2011).

    Article  Google Scholar 

  8. J.C.J. van der Donck, J.K. Stortelder and G.B. Derksen, Proc. SPIE 8166, 81662T (2011).

    Article  Google Scholar 

  9. J.H. Peters, C. Tonk, D. Spriegel, H.-S. Han, W. Cho, S. Wurm, Proc. SPIE, 6792, 67920F (2008).

    Article  Google Scholar 

  10. A. Okamoto, H. Kuniyasu, and T. Hattori, IEEE Trans. Semiconductor Manufacturing, Vol. 19, NO. 4, 372–380, November 2006.

    Article  Google Scholar 

  11. P. Kearney, W.-I. Cho, C.-U. Jeon, E. Gullikson, A. Jia, T. Tamura, A. Tajima, H. Kusunose, Presentation EUVL symposium, Barcelona, 2006.

  12. L. Shoval, S. Mangan, I. Schwarzband, S. Khristo, V. Babasubramanian, S. Goldstein, R. Brikman, N. Shoshani, Proc. SPIE 8322, 832227 (2012).

    Article  Google Scholar 

  13. W. Staud, I. Holcman, V. Kudriashov, J. Frosien, Presentation Frontiers of Characterization and Metrology, Genoble, May 2011.

  14. H. Miyai, H. Watanabe, Presentation EUVL symposium 2015, Maastricht.

  15. S. Stokowski and M. Vaez-Iravani, Proc. Int. Conf. Characterization Metrology ULSI Technol. 449, 405–415 (1998).

    Article  CAS  Google Scholar 

  16. G.-J. Heerens, “Container for a mask”, EP1434094A1 (2004).

  17. SEMI M50-0307 (2007).

  18. P. van der Walle, P. Kumar, D. Ityaksov, R. Versluis, D.J. Maas, O. Kievit, J. Janssen, J.C.J. van der Donck, Proc. SPIE 8522, 85222Q (2012).

    Article  Google Scholar 

  19. J.W. Goodman, J. Optical Soc. Amer. 66, 1145–1150 (1976).

    Article  Google Scholar 

  20. P. van der Walle, P. Kumar, D. Ityaksov, R. Versluis, D.J. Maas, O. Kievit, J. Janssen, J.C.J. van der Donck, Proc. SPIE 8681, 868116 (2013).

    Article  Google Scholar 

  21. P. van der Walle, S. Hannemann, D. van Eijk, W. Mulckhuyse, J.C.J. van der Donck, SPIE Proc. 9050, 905033 (2014).

    Article  Google Scholar 

  22. P.A. Bobbert, and J. Vlieger, Physica 137A 209–242 (1986).

    Article  CAS  Google Scholar 

  23. P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz and J.C.J. van der Donck, poster Frontiers of Characterization and Metrology for Nano Electronics Conference, Dresden, Germany, April 14–16, 2015.

  24. W. Crowcombe, E. Fritz, J.C.J van der Donck, N.B. Koster, Proc. SPIE 9048, 904831 (2014).

    Article  Google Scholar 

  25. P. Bussink, J.-B. Volatier, P. van der Walle, E. Fritz and J.C.J. van der Donck, Proc. SPIE 9048 (2016), in press.

  26. J.K. Stortelder, J.C.J. van der Donck, S. Oostrom, P. van der Walle, O. Brux, P. Dress: Proc. SPIE 7969, 79691Q (2011).

    Article  Google Scholar 

  27. C.-C. Wu, C.L. Hollemans, E.C. Fritz, O. Kievit and J.C.J. van der Donck, Poster EUVL Symposium, Washington, October 27–29 2014.

  28. J.L. Devore, in Probability and Statistics for Engineering and the Sciences; 5th edition, (Duxbury, Pacific Grove, 2000), pp. 709–714.

    Google Scholar 

  29. A. Nutsch, F. Supplieth, L. Pfitzner, H. Ryssel, Proc. IEEE Int. Symp. Semiconductor Manufacturing, YE212, 245–248 (2005).

    Google Scholar 

  30. SEMI E152-0709 (2011).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Donck, J., Bussink, P., Fritz, E. et al. RapidNano: Towards 20nm Particle Detection on EUV Mask Blanks. MRS Advances 1, 2225–2236 (2016). https://doi.org/10.1557/adv.2016.299

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.299

Navigation