Skip to main content
Log in

Estimation of Antioxidant Potential of Individual Components Present in Complex Mixture of Withania somnifera (Ashwagandha) Root Fraction by Thin-Layer Chromatography—2,2-Diphenyl-1-Picrylhdrazyl Method

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

A thin-layer chromatography–2,2-diphenyl-1-picrylhdrazyl (TLC—DPPH) method has been developed for the quantification of withanolides and simultaneous estimation of antioxidant potential of each constituent present in a complex mixture. High-performance thin-layer chromatography (HPTLC) of withanolide-rich fraction of Withania somnifera root was performed on Si 60F254 HPTLC plates with dichloromethane-toluene-methanol-acetone-diethyl ether (6.5:7:4:1.5:1, v/v) as a mobile phase for the separation of withanolides and on the basis of RF values 0.07, 0.55, 0.61, 0.63, 0.66, and 0.77 for withanoside V, withaferine A, 1,2-deoxywithastramonolide, withanone, withanolide A, and withanolide B, respectively. The concentrations of withanoside V, withaferine A, 1,2-deoxywithastramonolide, withanone, withanolide A, and withanolide B were 0.86, 12.9, 1.92, 1.52, 5.24, and 4.52 mg g−1 respectively. A TLC-DPPH rapid test was used to assess the free-radical scavenging activity of constituents in withanolide-rich fraction for the first time. In withanolides, withanoside V and withanolide B show the highest antioxidant potential. In unknown compounds, peak No. 17 at RF 0.92 has the highest antioxidant potential and peak No. 16 at RF 0.87 has recorded the lowest antioxidant potential. It is also found that some of the unidentified components had significant antioxidant potential. This technique has several advantages; therefore, this method will be useful for rapidly validating the Ayurvedic products containing W. somnifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kulkarni, A. Dhir, Prog. Neuropsychopharmacol. Biol. Psychiatry 32 (2008) 1093–1105.

    Article  CAS  PubMed  Google Scholar 

  2. L.C. Mishra, B.B. Singh, Altern. Med. Rev. 5 (2000) 334–346.

    CAS  PubMed  Google Scholar 

  3. G. Gupta, A. Rana, Pharmacogn. Rev. 1 (2007) 129–136.

    CAS  Google Scholar 

  4. V. Mehrotra, S. Mehrotra, J. Microbiol. Biotechnol. 1 (2011) 40–45.

    Google Scholar 

  5. S. Bhattacharya, A. Muruganandam, Pharmacol. Biochem. Behav. 75 (2003) 547–555.

    Article  CAS  PubMed  Google Scholar 

  6. J.N. Dhuley, Phytother. Res. 15 (2001) 524–528.

    Article  CAS  PubMed  Google Scholar 

  7. S.K. Gupta, I. Mohanty, Mol. Cell. Biochem. 260 (2004) 39–47.

    Article  PubMed  Google Scholar 

  8. P. Senthilnathan, R. Padmavati, Chem. Biol. Interact. 159 (2006) 180–185.

    Article  CAS  PubMed  Google Scholar 

  9. S.K. Kulkarni, K.K. Akula, Indian J. Exp. Biol. 46 (2008) 465–469.

    CAS  PubMed  Google Scholar 

  10. M. Ziauddin, N. Phansalkar, J. Ethnopharmacol. 50 (1996) 69–76.

    Article  CAS  PubMed  Google Scholar 

  11. V. Senthil, S. Ramadevi, Chem. Biol. Interact. 167 (2007) 19–30.

    Article  CAS  PubMed  Google Scholar 

  12. J. Dhabheliya, S.A. Khan, Int. J. Pharm. Sci. 2 (2010) 51–53.

    Google Scholar 

  13. A.A. Elberry, F.M. Harraz, J. Basic Clin. Pharm. 1 (2010) 247–254.

    PubMed  PubMed Central  Google Scholar 

  14. P. Pawar, S. Gilda, BMC Complement. Altern. Med. 11 (2011).

  15. A. Singh, V.A. Saharan, Int. J. Green Pharm. 5 (2011) 69–74.

    Article  Google Scholar 

  16. V.S. Sumantran, A. Kulkarni, J. Biosci. 32 (2007) 299–307.

    Article  PubMed  Google Scholar 

  17. S. Ghosal, J. Lal, Phytother. Res. 3 (1989) 201–206.

    Article  CAS  Google Scholar 

  18. M. Ali, M. Shuaib, Phytochemistry (Oxford) 44 (1997) 1163–1168.

    Article  CAS  Google Scholar 

  19. M.H. Mirjalili, E. Moyano, Molecules 14 (2009) 2373–2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R.S. Sangwan, N.D. Chaurasiya, Physiol. Plantarum 133 (2008) 278–287.

    Article  CAS  Google Scholar 

  21. S. Chatterjee, S. Shrivastava, Phytochemistry 71 (2010) 1085–1094.

    Article  CAS  PubMed  Google Scholar 

  22. N.D. Chaurasia, G.C. Uniyal, Phytochem. Anal. 19 (2008) 148–154.

    Article  CAS  Google Scholar 

  23. V. Sharma, B. Singh, Chromatographia 66 (2007) 801–804.

    Article  CAS  Google Scholar 

  24. P. Shrivastav, N. Tiwari, J. AOAC Int. 91 (2008) 1154–1161.

    Google Scholar 

  25. S.T. Devkar, Y.S. Badhe, J. Planar Chromatogr. 25 (2012) 290–294.

    Article  CAS  Google Scholar 

  26. S.M. Suryapujary, R.D. Deotale, J. Soils Crops 20 (2010) 39–41.

    Google Scholar 

  27. A. Kumar, M. Kaul, Genet. Resour. Crop. Evol. 54 (2007) 655–660.

    Article  CAS  Google Scholar 

  28. S. Devkar, M. Hegde, Pharm. Biol. (submitted for publication).

  29. L. Misra, P. Lal, Steroids 73 (2008) 245–251.

    Article  CAS  PubMed  Google Scholar 

  30. B. Patwardhan, R. Mashelkar, Drug Discov. Today 14 (2009) 804–811.

    Article  PubMed  Google Scholar 

  31. L. Ciesla, D. Staszek, Phytochem. Anal. 22 (2011) 59–65.

    Article  CAS  PubMed  Google Scholar 

  32. L. Ciesla, M. Hajnos, J. Planar Chromatogr. 24 (2011) 295–300.

    Article  CAS  Google Scholar 

  33. M. Olech, L. Komsta, Food Chem. 132 (2012) 549–553.

    Article  CAS  PubMed  Google Scholar 

  34. O.N. Pozharitskaya, S.A. Ivanova, Phytochem. Anal. 19 (2008) 236–243.

    Article  CAS  PubMed  Google Scholar 

  35. L. Ciesla, D. Staszek, Med. Chem. 8 (2012) 102–111.

    Article  CAS  PubMed  Google Scholar 

  36. R.A. van Iterson, Drenthe College Emmen, Holland, for http://www.standardbase.com.

  37. M. Waksmundzka-Hajnos, J. Sherma, Thin Layer Chromatography in Phytochemistry, CRS Press, Boca Raton, 2008.

    Book  Google Scholar 

  38. T. Kobuyama, C. Tohda, Br. J. Pharmacol. 144 (2005) 961–971.

    Article  CAS  Google Scholar 

  39. K. Kour, A. Pandey, Int. Immunopharmacol. 9 (2009) 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  40. F. Malik, J. Singh, Life Sci. 80 (2007) 1525–1538.

    Article  CAS  PubMed  Google Scholar 

  41. P.B. Mohan, A. Hamza, Chem. Biol. 14 (2007) 623–634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. E.P. Sabina, S. Chandel, J. Pharm. Pharm. Sci. 11 (2008) 46–55.

    CAS  PubMed  Google Scholar 

  43. N. Sen, B. Banerjee, Cell Death Differ. 14 (2007) 358–367.

    Article  CAS  PubMed  Google Scholar 

  44. H. Yang, G. Shi, Mol. Pharmacol. 71 (2007) 426–437.

    Article  CAS  PubMed  Google Scholar 

  45. N. Nakayama, C. Tohada, Neurosci. Res. 58 (2007) 176–182.

    Article  CAS  PubMed  Google Scholar 

  46. M. Hegde, S. Bhalerao, Curr. Sci. 95 (2008) 721–722.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahabaleshwar V. Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devkar, S.T., Jagtap, S.D., Katyare, S.S. et al. Estimation of Antioxidant Potential of Individual Components Present in Complex Mixture of Withania somnifera (Ashwagandha) Root Fraction by Thin-Layer Chromatography—2,2-Diphenyl-1-Picrylhdrazyl Method. JPC-J Planar Chromat 27, 157–161 (2014). https://doi.org/10.1556/JPC.27.2014.3.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/JPC.27.2014.3.2

Key Words

Navigation