Skip to main content
Log in

Development and Validation of Spectrophotometric and High-Performance Thin-Layer Chromatographic Methods for the Determination of Folic Acid in the Presence of Its Impurities (Degradation Products)

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

Three accurate, sensitive, simple, and precise spectrophotometric methods along with thin-layer chromatography (TLC)–densitometric method were developed, optimized, and validated for the determination of folic acid in the presence of its two impurities (photodegradation products), namely, pteroic acid and para-aminobenzoic acid. Method A is the ratio difference spectrophotometric method (RDSM) which depends on measuring the difference value in the ratio spectrum, where the difference between 291 and 313 nm was used for the determination of folic acid, while the difference between 305 and 319 nm was selected for the estimation of para-aminobenzoic acid; on the other hand, pteroic acid can be determined using the first derivative of ratio spectra spectrophotometric method at 262 nm. Method B is the double-divisor spectrophotometric method (DDSM); this method is based on using the ratio spectrum obtained by the division of the spectrum of ternary mixture by the spectrum of binary mixture containing two of the three mentioned components, and in this method, folic acid, para-aminobenzoic acid, and pteroic acid were measured at 242, 313, and 258 nm, respectively. Method C is the mean-centering of ratio spectra spectrophotometric method (MCR); in this method, folic acid, para-aminobenzoic acid, and pteroic acid can be measured using the mean-centered second ratio spectra amplitudes at 317–318 (peak to peak), 264–265 (peak to peak), and 232 nm, respectively. Lastly, method D is a TLC—densitometric one that depends on the separation and quantification of the mentioned components on TLC silica gel 60 F254 plates, using methanol—iso-propanol—water—acetic acid (9:0.5:0.5:0.2, by volume) as the developing system, followed by densitometric measurement of the separated bands at 280 nm. Method validation was carried out according to the International Conference on Harmonisation (ICH) guidelines, and the proposed methods were successfully applied to the analysis of folic acid in pharmaceutical formulations, where no interference from additives has been found. The results obtained by the proposed methods were statistically compared with those obtained by the official reversed-phase high-performance liquid chromatography (RP-HPLC) method, in which no significant difference was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The British Pharmacopoeia, The Stationary Office, London; electronic version, 2015.

  2. N.J. Akhtar, M.A. Khan, I. Ahmed, J. Pharm. Biomed. Anal. 16 (1997) 95–99.

    Article  CAS  Google Scholar 

  3. X.H. Zheng, L.G. Jiang, L.T. Zhao, A.Y. Zhang, L. Ding, J. Pharm. Anal. 5 (2015) 269–275.

    Article  CAS  Google Scholar 

  4. R. Amidzic, J. Brboric, O. Cudina, S. Vladimirov, J. Serb. Chem. Soc. 70 (2005) 1229–1235.

    Article  CAS  Google Scholar 

  5. B.C. Nelson, K.E. Sharpless, L.C. Sander, J. Chromatogr. A 1135 (2006) 203–211.

    Article  CAS  Google Scholar 

  6. V.D. Reif, J.T. Reamer, L.T. Orady, J. Pharm. Sci. 66 (1977) 1112–1116.

    Article  CAS  Google Scholar 

  7. R. Bhushan, Biomed. Chromatogr. 8 (1994) 196–198.

    Article  CAS  Google Scholar 

  8. A.Z. Ramadan, A.B. Ordakji, I. Mahmoud, Asian J. Chem. 22 (2010) 3283–3291.

    CAS  Google Scholar 

  9. E.S. Elzanfaly, M. Nebsen, N.K. Ramadan, Pak. J. Pharm. Sci. 23 (2010) 409–415.

    CAS  PubMed  Google Scholar 

  10. F. J. Aberastun, A.I. Jimenez, J.J. Arias, F. Jimenez, Anal. Lett. 35 (2002) 1677–1691.

    Article  Google Scholar 

  11. A. Pathak, S.J. Rajput, Indian J. Pharm. Sci. 70 (2008) 513–517.

    Article  CAS  Google Scholar 

  12. P. Nagaraja, R.A. Vasantha, H.S. Yathirajan, Anal. Biochem. 307 (2002) 316–321.

    Article  CAS  Google Scholar 

  13. S. Zhao, H. Yuan, C. Xie, D. Xiao, J. Chromatogr. A 1107 (2006) 290–293.

    Article  CAS  Google Scholar 

  14. MATLAB ver. 6.5, Mathworks Inc., Torrance, CA, 1999.

  15. N.W. Sayed, M.A. Hegazy, E.A. Abdel-Aleem, M. Abdelkawy, R.M. Abdelfatah, J. Planar Chromatogr. 27 (2014) 466–471.

    Article  CAS  Google Scholar 

  16. S. Farber, Blood 4 (1949) 160–167.

    Article  CAS  Google Scholar 

  17. E.B. Astwood, J. Pharm. Exp. Therap. 78 (1943) 79–89.

    CAS  Google Scholar 

  18. C.C. Scott, E.B. Robbins, Proc. Soc. Exp. Bio. Med. 49 (1942) 184–186.

    Article  CAS  Google Scholar 

  19. N.S. Abdelwahab, M.M. Abdelrahman, Anal. Methods 24 (2014) 509–514.

    Google Scholar 

  20. E.M. Hussein, M.M. Ibrahim, Y.M. Issa, F.M. Abdel-Gawad, S. Barakat, Int. J. Drug Dev. Res. 3 (2011) 168–177.

    Google Scholar 

  21. E.A. Abdel Aleem, M.A. Hegazy, N.W. Sayed, M. Abdelkawy, R.M. Abdel Fatah, Spectrochim. Acta A 136 (2015) 707–713.

    Article  CAS  Google Scholar 

  22. H.M. Lotfy, M.A. Hegazy, M.R. Rezk, Y.R. Omran, Spectrochim. Acta A 148 (2015) 328–337.

    Article  CAS  Google Scholar 

  23. E. Dinc, F. Onur, Anal. Chim. Acta 359 (1998) 93–106.

    Article  CAS  Google Scholar 

  24. E. Dinc, Talanta 48 (1999) 1145–1157.

    Article  CAS  Google Scholar 

  25. E. Dinc, F. Onur, Talanta 58 (2002) 579–594.

    Article  CAS  Google Scholar 

  26. R.V. Gohel, S.J. Parmar, B.A. Patel, Int. J. Pharm. Tech. Res. 6 (2014) 1518–1525.

    CAS  Google Scholar 

  27. N.S. Abdelwahab, B.A. Alzeiny, S.I. Tohamy, J. Pharm. Anal. 2 (2012) 279–284.

    Article  CAS  Google Scholar 

  28. N.W. Ali, N.S. Abdelwahab, M.M. Abdelrahman, B.A. Elzeiny, S.I. Tohamy, Anal. Chem. Lett. 6 (2016) 707–717.

    Article  Google Scholar 

  29. A.M. Mohsen, H.M. Lotfy, A.M. Badawey, H. Salem, S.Z. Elkhateeb, Int. J. Pharm. Pharm. Sci. 5 (2013) 478–487.

    CAS  Google Scholar 

  30. B. Renger, in: H. Traitler, O.I. Voroshilova, R.E. Kaiser (eds), Proceedings of the Sixth International Symposium on Instrumental Planar Chromatography, for Chromatography, Bad Dürkheim, 1991, 291.

  31. H. Hajimehdipoor, M. Shekarchi, M.P. Hamedani, Z. Abedi, H. Zahedi, A.R. Gohari, Iranian J. Pharm. Res. 10 (2011) 705–710.

    CAS  Google Scholar 

  32. International Conference on Harmonization (ICH), Q2B, Validation of Analytical Procedures, Methodology, Vol. 62, US FDA Federal Register, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salwa I. Tohamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N.W., Abdelwahab, N.S., Abdelrahman, M.M. et al. Development and Validation of Spectrophotometric and High-Performance Thin-Layer Chromatographic Methods for the Determination of Folic Acid in the Presence of Its Impurities (Degradation Products). JPC-J Planar Chromat 31, 367–376 (2018). https://doi.org/10.1556/1006.2018.31.5.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1006.2018.31.5.4

Key Words

Navigation